Journal: IEEE Transactions on Industrial Electronics
Authors: Myung-Seop Lim, Seung-Hee Chai, Jae-Sik Yang, Jung-Pyo Hong
DOI: 10.1109/TIE.2015.2409804
This paper proposes the design process of a 2.62-kW 150-krpm high-speed surface-mounted permanent-magnet synchronous motor. To meet the required specifications, the numbers of poles and slots were determined by considering the maximum speed and the rotary stability affected by the vibration of the rotor. In addition, this paper describes not only the appropriate material selection method but also the appropriate geometry design method based on analytic approaches. Furthermore, to precisely evaluate the bearing and windage losses at a high speed, a method that combines the finite-element method and the experiment results of the prototype was used. As a result, an improved motor was designed, which had higher maximum power and speed than the prototype and a lower mass moment of inertia. Finally, tests were conducted to verify the validity of the proposed design process and the effectiveness of the motor.