Prof. Myung-Seop Lim

Design and Analysis of Dual Stator PMSM with Separately Controlled Dual 3-Phase Winding for eVTOL Propulsion
2022-07-22 17:52:28 조회수612
Date of Publication: 2022.12
Journal: IEEE Transactions on Transportation Electrification
Authors: Sung-Woo Hwang, Dong-Kyun Son, Soo-Hwan Park, Geun-Ho Lee, Young-Doo Yoon, Myung-Seop Lim
DOI: 10.1109/TTE.2022.3192353

link

The propulsion system of the electric-powered vertical take-off and landing aircrafts requires high level of performances including the power density, efficiency, noise vibration and harshness, and the fault-tolerance. Among many types of conventional electric motor, the outer rotor surface-mounted permanent magnet synchronous motor (SPMSM) is widely used for its high power density and low torque pulsation. However, these advantages are degraded when the multi-phase winding is applied to secure the fault-tolerance characteristics. To overcome the limit of conventional motor topology, the dual stator permanent magnet synchronous motor with separately controlled dual 3-phase winding is proposed. The advantages of the proposed topology are resulted from the feature of mechanical, electrical, and magnetic isolation. To maximize the distinctive feature, a design process considering separated current vector control (SCVC) method are established. A design example is presented to demonstrate impacts of the proposed design process considering SCVC on the power density maximization, torque harmonic reduction, and efficiency improvement. Finally, the experimental verification is presented to validate the proposed design and control techniques. 

 
사이트맵 닫기