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Abstract: The uncertainty of an electromagnetic device is inherent in its manufacturing process. To consider the various
uncertainties, several probabilistic design optimisation techniques, such as robust or reliability-based design optimisation, have
been developed. Although a statistical model of uncertainties is extremely important in obtaining an accurate result from a
probabilistic design optimisation, most studies on probabilistic design optimisation have assumed these uncertainties to follow
normal distributions. However, this assumption may not be valid in several real-world applications. Therefore, this study
presents an efficient uncertainty identification method that provides a systematic framework to select the fittest distribution and
find its optimal statistical parameters using finite element analysis and experimental data from prototype testing. The Akaike
information criterion and maximum likelihood estimation are used for model selection and parameter estimation, respectively. To
reduce the computational cost, the kriging surrogate model is used to evaluate the response of the electromagnetic device. The
proposed method is applied to a surface-mounted permanent magnet synchronous motor, to identify the uncertainties that
produce the additional harmonic components of cogging torque. The results show that this method is a powerful tool in
analysing the effect of uncertainties on the performance of an electromagnetic device.

1 Introduction
Mass-produced products usually exhibit variations in their
characteristics and performances, owing to the presence of various
uncertainties. In the worst-case scenario, this phenomenon can
even lead to the production of defective products. These
uncertainties generally arise from the manufacturing process and
material properties. To improve the robustness and ensure the
reliability of electromagnetic (EM) devices under various
uncertainties, several probabilistic design optimisation techniques,
such as robust design optimisation (RDO) and reliability-based
design optimisation (RBDO), have been developed [1–4]. The
purpose of RDO is to find a less-sensitive optimal solution under
uncertainties, which results in a minimal variance in performance,
while satisfying all design constraints. In RBDO, the probability of
satisfying design constraint for each response is evaluated through
a reliability analysis during the optimisation process. RBDO, thus,
finds an optimal design under uncertainties, which guarantees a
minimum level of reliability for each response.

The electrical power steering (EPS) system is an important
application of probabilistic design optimisation. EPS has become
an attractive alternative to hydraulic power steering in vehicles,
owing to its contribution to the reduction in weight and fuel
consumption. The cogging torque is the torque generated due to the
interaction between the permanent magnets of the rotor and stator
slots of the electric motor. Reducing the cogging torque is the most
crucial design objective for EPS motors because it directly affects
vehicle handling performance. The cogging torque shows a high
degree of variation due to several uncertainties originating from the
manufacturing process [5, 6]. The stamping process leads to
various uncertainties in the geometric parameters of the stator in
the surface-mounted permanent magnet synchronous motor
(SPMSM) used in EPS. Thus, a reliability-based RDO has been
adopted to ensure the quality and design feasibility of the
performances of an EPS system [7]. Irregularities from the stacking
process of metal sheets and imprecise attachment between the
permanent magnets and rotor core cause uncertainties in the skew
angle of the SPMSM used in EPS. To consider these uncertainties

in probability design optimisation, a space–time kriging surrogate
model was proposed [8]. A parametric study of the various design
parameters that affect the cogging torque of the SPMSM for EPS
was also conducted to analyse the variations resulting from
manufacturing tolerances [9].

Although several probabilistic design optimisation techniques,
such as RDO and RBDO, have been developed and applied to EM
devices, they are usually based on the assumption that uncertainties
follow a normal distribution [1–5]. In addition, the standard
deviation of these uncertainties is usually determined based on the
designer's experience. Although non-normal distributions have also
been considered in a few studies [5, 10], the assumption of the
statistical model and its parameters has not been validated. Owing
to the fact that these assumptions can cause significant errors in the
probabilistic design optimisation results, the statistical model and
its parameters should be carefully determined. However, the
identification of these uncertainties originating from the
manufacturing process is extremely challenging at the initial design
stage.

This study presents an uncertainty identification method that
involves a systematic framework to obtain statistical models and
their parameters using finite element analysis (FEA) and physical
experimentation. To reduce the computational cost of the
simulation, design of experiment (DOE) techniques and a kriging
surrogate model are employed to evaluate the response of an EM
device. The proposed method utilises maximum likelihood
estimation (MLE), which estimates the parameters of the statistical
model so that the observed prototype data become the most
probable outcome. To compare various probability distributions
and find the fittest one, the Akaike information criterion (AIC) is
adopted. The proposed method was applied to an SPMSM for EPS
based on a simulation model and its prototype test data.

The remainder of the paper is organised as follows. In the next
section, the cogging torque that occurs in the SPMSM is described.
In Section 3, the analysis of variance (ANOVA) is performed to
investigate the influence of each design parameter on the cogging
torque of an SPMSM. In Section 4, the kriging surrogate modelling
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procedure is explained. Then, each step of the uncertainty
identification procedure is described in Section 5. The application
results for the SPMSM are discussed in Section 6, and the
conclusions from the study are presented in Section 7.

2 Cogging torque of SPMSM
The cogging torque is an undesired effect that occurs owing to the
interaction between the rotor magnets and stator slots. Owing to the
stator slotting, the air-gap length varies periodically. This leads to a
permeance change at the air gap and causes a periodic oscillation in
the magnetic energy. Thus, a pulsating torque is generated, even at
no-load operation. The cogging torque is a periodic function that
can be obtained as a sum of the interactions between each edge of
the rotor and stator slot openings. The harmonic components of the
cogging torque can be divided into two different components
according to their origin. The native harmonic components (NHCs)
of the cogging torque are inevitable even in an ideal motor and
always exist. The NHCs of the cogging torque can be easily
evaluated through an FEA. The additional harmonic components
(AHCs) of the cogging torque are usually generated in
manufactured motors, owing to various uncertainties. Owing to the
fact that AHCs are unpredictable at the initial design stage and are

considered negligible, reducing the NHCs is usually the main
design objective.

One of the most common strategies for reducing cogging torque
is to apply a skew up to the value of a period of the cogging torque.
The main harmonic order nmh of the cogging torque can be
calculated using the least common multiple of the magnetic poles
and the number of the teeth on the stator, as follows:

nmh = LCM(Q, P) (1)

where Q is the number of slots in the stator and P is the number of
poles in the rotor. Therefore, the orders of the NHC (NNHCi) that
appear in the cogging torque is a multiple of the main harmonic
order

NNHCi = nmh ⋅ i i = 1, 2, 3, … (2)

Owing to the fact that the magnitude of the cogging torque
decreases considerably as the order increases, eliminating the first
few multiples of the main harmonic order is essential. The
elimination of these harmonic components can be achieved by
applying a skew angle to the rotor core. The orders of the
remaining NHCs (NNHCRi) are determined by the number of steps
applied

NNHCRi = nmh ⋅ NS ⋅ i i = 1, 2, 3, … (3)

where NS is the number of steps.
The specifications and shape of the SPMSM for EPS used in

this study are listed in Table 1 and shown in Fig. 1, respectively. 
Five design parameters were used for the uncertainty identification:
stator gap, slot opening, residual induction and shifting angle of
one magnet of the rotor, and tooth width. This model had six poles,
nine slots, and included a three-step skew rotor. Therefore, the
cogging torque occurred 18 times for each rotation. Owing to the
three-step skew, 18th and 36th harmonic orders of cogging torque
were eliminated, while the 54th harmonic order remained. The
harmonic components that had a harmonic order larger than the
54th-order, were not considered because their effect is negligible.
As the three-step skew was applied, the magnitude of the cogging
torque reduced from 24.2 to 0.5 mNm [9].

To verify the cogging torque in the current design, six
prototypes were manufactured. The manufactured stator and rotor
prototypes are shown in Fig. 2. Owing to the fact that a divided
core was applied, the size of the SPMSM could be reduced owing
to a higher fill factor and shorter end-turn length, and the
productivity could be increased because of the easier winding. The
cogging torque of the prototype motors was measured using a
torque sensor as shown in Fig. 3a. The results of the measurement
were validated through a second measuring experiment using
additional equipment, as shown in Fig. 3b. The validation in the
previous study showed that the measured cogging torque of the six
prototypes was considerably reliable [9]. The results of the
harmonic analysis of the measured cogging torque are presented in
Fig. 4. The magnitudes of the 6th and 9th harmonic orders of
AHCs, which were expected to be eliminated, were particularly
large and significantly contributed to the increase in the cogging
torque. As the magnitude of the cogging torque of an SPMSM for
EPS should be kept as low as possible, the AHCs cannot be
neglected. To identify the effects of manufacturing uncertainties on
the generation of AHCs, a parametric study was performed for this
SPMSM [9]. The limitations of the previous study are that only the
effect of certain levels of manufacturing tolerance were explored
and the uncertainties were neither identified, nor quantified.

3 ANOVA for cogging torque
To investigate the influence of each design parameter on the
cogging torque of the SPMSM in a systematic manner, the
ANOVA was adopted. ANOVA has been widely employed for the
design optimisation of EM systems [11, 12]. ANOVA is a form of
statistical hypothesis testing that is widely used in the analysis of

Table 1 Specifications of SPMSM
Name Unit Value
power W 450
no. of poles — 6
no. of slots — 9
diameter of stator mm 85
diameter of rotor mm 38.8
material of stator and rotor 50PN470 (POSCO PN series)
material of the permanent
magnet

NMX-36H (Hitachi NEOMAX series)

skew three-step skew
 

Fig. 1  Stator and rotor cores of SPMSM
 

Fig. 2  Manufactured prototypes of SPMSM. Note: From [2]. Copyright
2016 by IET Electric Power Applications (reproduced with kind permission
from the IET)
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experimental data [13]. There are two hypotheses: the null
hypothesis and the alternative hypothesis. In a typical application,
the null hypothesis states that certain design factors do not have a
significant influence on the response. On the contrary, the
alternative hypothesis states that certain design factors are
significant to the response. A DOE is usually performed to explore
the change in response as design parameters are changed according
to a pre-defined combination of certain levels. After the evaluation

of the response at all design points, an F-test is performed for each
design parameter. An F-test is used to assess whether the mean
response values of a design parameter within pre-defined levels
differ from each other. The test statistic in an F-test is the ratio of
two-scaled sums of squares: one that reflects the variance caused
by the level change in a design parameter and another that reflects
the variance that is not explained by the changes in the design
parameters. The test statistic tends to be greater when the null
hypothesis is not true. The assessment can also be conducted by
calculating the p-value of a value of F greater than or equal to the
observed value. The null hypothesis is rejected if this probability is
less than or equal to the pre-defined significance level α. The
significance level of the test is usually chosen as 0.05, 0.01, or
0.001. The lower the significance level is, the more significant are
the variables that the test selects.

In this study, the influences of the five design parameters were
investigated. These design parameters were chosen based on the
results of the parametric study in the previous work [9] and the
discussion with design experts of EM device. Although various
DOE techniques for ANOVA exist, an orthogonal array (OA) is
employed in several cases owing to its simplicity and efficiency
[14, 15]. Therefore, a three-level OA table that consists of 18
experiments was adopted. Table 2 presents the boundary of design
parameters and Table 3 is the three-level OA table with the
corresponding sixth-order and ninth-order AHC values of cogging
torque. Owing to the fact that a small number of manufacturing
uncertainties generated the AHCs of cogging torque, the p-value
was determined as 0.001 in order to select the most significant
design parameters.

Tables 4 and 5 list the results of the ANOVA for the cogging
torque. The stator gap was the dominant design parameter that
significantly affected the sixth-order AHC. The ninth-order AHC
was mainly influenced by the residual induction and the shifting
angle of the magnet position.

4 Surrogate model
Before we embark upon identifying and quantifying these
uncertainties, it will be necessary to briefly understand surrogate
modelling. A surrogate model is a functional relationship between
the design parameter domain and response, which is widely used in
the design optimisation of EM devices, to reduce the large
computational cost associated with computer simulation [16, 17].
As an extremely large number of evaluations of the computer
simulation are required, the construction of a surrogate model for
the sixth-order and ninth-order AHCs is necessary. A general
surrogate modelling procedure consists of three main stages: DOE,
surrogate modelling and validation of the surrogate model. There
are several options for each step, which can be selected according
to the characteristics of the problem, the computational cost,
comfortability and accuracy. However, the details regarding the
theory or comparative study are beyond the scope of this paper.
Therefore, a brief explanation of the selected methodologies and
their numerical results will be provided along with some popular
references.

4.1 Design of experiment

The DOE is the sampling plan in the design parameter domain. The
sampling strategy for constructing a surrogate model based on
response data collected from deterministic computer simulations
differs from that for real-world experimentation [18, 19].
Numerous DOE techniques and their combinations have been
developed, and they are usually required to satisfy the following
properties: granularity, space-filling, good projective or non-
collapsing property and orthogonality [20].

In this study, uniform sampling was used for a one-dimensional
design domain because the aforementioned properties could be
easily satisfied. For the one-dimensional uniform sampling, the
design domain was divided into ten intervals, by 11 sample points.
For a two-dimensional design domain, a combination of optimal
Latin hypercube design (OLHD) and sequential maximin distance
design (SMDD) was adopted [15]. The objective of the OLHD was

Fig. 3  Measuring equipment for cogging torque
(a) Primary equipment, (b) Additional equipment. Note: From [2]. Copyright 2016 by
IET Electric Power Applications (reproduced with kind permission from the IET)

 

Fig. 4  Experimental results of harmonic analysis of the measured cogging
torque

 
Table 2 Boundary of design parameters
Name Description Unit L1 L2 L3
x1 stator gap mm 0 0.05 0.1
x2 slot opening mm 1.9 2.0 2.1
x3 residual induction T 1.14 1.2 1.26
x4 shifting angle deg. 0 0.5 1
x5 tooth width mm 8.8 9.0 9.2
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to obtain sample points that satisfy the space-filling and non-
collapsing properties in the entire design domain [21]. The OLHD
was first applied to obtain an initial set of 30 sample points. Then,
the SMDD was performed by adding one sample point at one time,

using the maximin distance criterion to guarantee sufficient
information at the boundaries and an empty space in the design
domain [22]. The SMDD was repeatedly performed until a total of
30 additional sample points were selected. Both sampling methods
were applied in the normalised design domain in the range of [0,
1]. The sampling results obtained by using the combination of the
OLHD and SMDD are illustrated in Fig. 5. 

4.2 Kriging surrogate model

Several types of surrogate models are used in design optimisation:
the response surface model, support vector machine, radial basis
function, artificial neural network and kriging surrogate model [16,
17]. The response surface model is widely used because it is simple
and is easy to apply. The support vector machine is a more
complex regression model than the response surface model and fits
the response in the design domain using the design samples from
the DOE. These two models, however, assume that a random error
exists in the sample data from the computer simulation. The radial
basis function is a linear combination of weighted basis functions
that interpolate the response data. The artificial neural network is
also an interpolation model based on multiple hidden layers and

Table 3 OA table for ANOVA of cogging torque
No. Stator gap Slot opening Residual induction Shifting angle Tooth width AHC sixth, mNm AHC ninth, mNm
1 1 1 1 1 1 0.0007 5.6068
2 1 2 2 2 2 0.0010 3.6546
3 1 3 3 3 3 0.0042 9.7025
4 2 1 1 2 2 6.5443 6.5608
5 2 2 2 3 3 6.7463 7.0959
6 2 3 3 1 1 6.8143 5.9408
7 3 1 2 1 3 9.4959 0.0002
8 3 2 3 2 1 9.8666 6.7761
9 3 3 1 3 2 9.3514 8.9311
10 1 1 3 3 2 0.0018 9.5888
11 1 2 1 1 3 0.0029 5.6262
12 1 3 2 2 1 0.0027 3.6985
13 2 1 2 3 1 6.6702 7.0719
14 2 2 3 1 2 6.8298 5.8744
15 2 3 1 2 3 6.5053 6.6378
16 3 1 3 2 3 9.8344 6.7168
17 3 2 1 3 1 9.3658 8.8476
18 3 3 2 1 2 9.5142 0.0005

 

Table 4 ANOVA results for the sixth-order of AHC
Source of variation Sum of squares Degree of freedom Mean squares F ratio p-value
x1 289.1180 2 144.5590 19,998.3400 0
x2 0.0320 2 0.0160 2.2300 0.1777
x3 0.2100 2 0.1050 14.5300 0.0032
x4 0.0360 2 0.0180 2.5200 0.1500
x5 0.0200 2 0.0100 1.4000 0.3071
error 0.0510 7 0.0070 — —
total 289.4680 17 — — —

 

Table 5 ANOVA results for the ninth-order of AHC
Source of variation Sum of squares Degree of freedom Mean squares F ratio p-value
x1 5.9940 2 2.9969 11.3600 0.0063
x2 0.8120 2 0.4059 1.5400 0.2793
x3 53.6840 2 26.8418 101.7900 0
x4 67.2850 2 33.6423 127.5700 0
x5 0.9520 2 0.4761 1.8100 0.2332
error 1.8460 7 0.2637 — —
total 130.5720 17 — — —

 

Fig. 5  Sampling results in the two-dimensional normalised domain
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hyperparameters. The disadvantages of these two models are that
their accuracies highly depend on factors that should be defined by
the users, such as the type of the basis function, the values of the
model parameters, and the number of hidden layers. The kriging
surrogate model is an interpolation model that covers the global
trend of the response and local nonlinearity. The kriging surrogate
model generally exhibits high accuracy for a non-linear response,
using a reasonable number of samples from the DOE, and the
model parameters are optimised by an MLE.

Although each model has its own advantages and
disadvantages, all of them have been successfully employed in
design optimisation. In this study, the kriging surrogate model was
selected owing to its high accuracy for highly nonlinear functions
and its highly reliable prediction capability [23, 24]. The kriging
surrogate model is the sum of a global model and a local model and
is expressed as [25–27]

Y^ x = f x Tβ
^ + r x TR−1 Y − Fβ^ (4)

where f x  is the vector of known regression functions; β
^
 is the

estimator of the vector of unknown regression coefficients; R is the
correlation matrix among the sampled design points; r x  is the
correlation vector between the sampled design points and
prediction design point; Y is the response vector at the sampled
design point and F is the expanded design matrix. The first
component is the estimator of the global model and the second
component is the deviation from the estimated mean model. The
global model is determined by the generalised least squares
method. The local model includes a correlation matrix, which is
defined by a correlation function. In this study, ordinary kriging,
which is the most commonly used form of kriging to the
approximate computer simulation model, was employed [27]. A
Gaussian correlation function is preferred and is widely used to
construct a smooth response function, which is defined as

R θ, xi, x j = exp ∑
k = 1

nd

−θk xk
i − xk

j 2
(5)

where nd is the dimension of the design space; xi and xj are the
vectors of sampled points i and j, respectively and θ is the
correlation coefficient vector which is determined by the MLE.
Fig. 6 shows the sample set and kriging surrogate model for the
sixth-order AHC and ninth-order AHCs. It can be noted that the
sixth-order AHC exhibits an increase as the stator gap increases.
The ninth-order AHC is linearly dependent on the shifting angle,
and it linearly increases as the residual induction changes from the
initial value.

4.3 Validation of kriging surrogate model

The assessment of the surrogate model's quality is as important as
the DOE and selection of the surrogate model. To assess the
validity of the surrogate model, an error measure and validation
method should be first determined. As the surrogate model is an
approximation model, there is a difference between the response
values calculated from the surrogate model and those from the
simulation model. The error measure is a quantitative value that
evaluates the accuracy or the quality of a surrogate model. The
validation method deals with the calculation of this measure using
the given sample data. One of the most popular approaches is the
cross-validation method. The advantage of this method is that it
provides a nearly unbiased estimation of the generalisation error,
and the corresponding variance is reduced. The disadvantage is that
it requires the construction of several surrogate models [17].

In this study, the normalised root mean square error (NRMSE)
and leave-one-out cross-validation method were used. The
NRMSE obtained by using leave-one-out cross-validation is
defined as

NRMSE = 1
ns

∑
i = 1

ns Y^
−i xi − Y xi

max Y x − min Y x

2

× 100 (6)

where Y^
−i xi  is the predicted response at the ith design point

obtained from the kriging surrogate model, which is constructed
leaving out the ith sample from training; Y xi  is the response at the
ith design point calculated from the simulation model; max Y x
and min Y x  are the maximum and minimum response values,
respectively, among those at the design points; and ns is the number
of sample points. The NRMSEs of the kriging surrogate model for
the sixth and ninth-order AHCs were 0.6153 and 3.9824%,
respectively. The constructed kriging surrogate models were
considered to be sufficiently accurate to be implemented in
uncertainty identification.

5 Uncertainty identification
In certain engineering applications, the probability distribution of
the design parameters is known, whereas that of the response is
unknown. Most probabilistic design optimisation techniques, such
as RDO and RBDO, focus on how to predict the distribution of the
response or its statistical parameters. Therefore, the knowledge of
the probability distribution of the design parameters is a critical
precondition to applying any of these optimisation techniques.
However, there is inadequate literature associated with the
identification of the probability distribution or estimation of the
statistical parameters of input uncertainty. As direct measurement
of input parameters in the prototype samples may not be possible
or may be more difficult than the measurement of responses, the
inverse problem identifying the probability distribution and
estimating its statistical parameters from the response
measurements is the one that is usually solved. This is known as
uncertainty identification and can be widely implemented because
the measurement data of responses can be obtained more easily.
Conventional methods such as the perturbation method and Monte
Carlo simulation, however, are less accurate because of their
linearisation of the response or their computational requirements
[28, 29].

This paper proposes an uncertainty identification method that is
computationally more efficient, while also maintaining accuracy.
The framework of the proposed method is described in Fig. 7. 

Fig. 6  Sample set and kriging surrogate model for AHC
(a) Sixth-order AHC, (b) Ninth-order AHC
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First, the experimentation of the prototype samples is performed,
and the response data are collected. Next, the kriging surrogate
model is implemented to replace the simulation model that is
constructed using response data from the FEA at design points
determined by the DOE. To solve the inverse problem, the
probability of the response should be obtained. The unknown
probability distributions and the statistical parameters of the design
parameters are first assumed based on the candidate distribution list
and initial design. A total of 200 random samples are then
generated, and the response data are evaluated using the kriging
surrogate model. By using these data, the probability distribution of
the response and its statistical parameters are determined using the
AIC and MLE, respectively[30]. In this procedure, the
experimental response data from six manufactured prototypes are
used. A large sample size generally leads to increased accuracy and
precision when estimating the unknown parameters of a
distribution. The sample size is usually determined based on the
available time and cost. Considering that only one or two
prototypes are widely used for experimentation or design
verification, the authors believe that the experimental data of six
prototypes can yield a more reliable result.

For computational convenience and numerical stability, the
natural logarithm of the likelihood is more commonly used instead
of the likelihood function in the MLE. The log-likelihood is
defined using the following equation:

l θ = ∑
i = 1

m
log f xi; θ (7)

where l is the likelihood function; θ is the statistical parameter
vector of the distribution; f is the probability density function
(PDF) of the distribution; m is the number of the data and xi is ith
datum.

The AIC is a quantified measure of the relative quality of the
statistical models for the given data; it provides the fittest
distribution among the candidate probability distributions by using
the maximum value of the log-likelihood function and the number
of statistical parameters. In doing so, it deals with the trade-off
between the goodness of fit and the complexity of the model. The
AIC is defined by the following equation:

AIC = − 2 lmax − np (8)

where lmax is the maximum log-likelihood value of the candidate
distribution and np is the number of statistical parameters of each
candidate distribution. The candidate distributions are usually
selected by the design experts. As there is no prior knowledge
about the response, six probability distributions that are widely
implemented in various fields of science and engineering are
chosen as follows: normal, log-normal, gamma, Weibull, minimum
Gumbel and generalised extreme value (GEV) distributions. The
normal, log-normal, and minimum Gumbel distributions have the
location and scale parameters while the gamma and Weibull
distributions have the scale and shape parameters. The GEV
distribution has the location, scale and shape parameters.

After the probability distribution and its statistical parameters of
the response are determined, MLE is applied using the response
data from the experiment and the PDF of the response, to find the
statistical parameters of the selected probability distribution of the
design parameters. This procedure is repeatedly performed for all
candidate probability distributions of the design parameters. When
there is more than one uncertainty to identify, the combination of
the assumed probability distributions is used. The candidate
probability distributions for the unknown uncertainty of the design
parameter are as follows: normal, log-normal, gamma, Weibull and
maximum Gumbel distributions. The minimum Gumbel
distribution was replaced by the maximum Gumbel distribution
because a right-skewed distribution was not expected to be
generated by the fabrication of the motor for the design parameter.
The GEV distribution was also not included because the
probability distribution of the uncertainty should not have an
endpoint. The candidate probability distributions used in the
proposed method are listed in Table 6. By comparing the log-
likelihood function values obtained for each case, it is possible to
quantify the quality of the identified probability distribution and
select the most probable distribution with the maximum log-
likelihood function value.

6 Application results
The proposed method was applied to identify the uncertainties of
the design parameters of an SPMSM. Fig. 8 shows the application
results for the sixth-order AHC of the cogging torque. It was found
that there are two possible scenarios. The first case is that the stator
gap was close to 0, as intended by the designer, and the frequency
decreased as the stator gap became larger. The second case is that

Fig. 7  Framework of the uncertainty identification method
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the stator gap inevitably existed and followed a normal
distribution. The probability distribution of the stator gap in the
first case was identified as a gamma distribution with k = 1.2550
and θ = 0.0144. The histogram in Fig. 8 represents the random
sample set generated from this distribution. The identified
uncertainty of the stator gap is reasonably acceptable because a
large number of the products are designed to have a very small
stator gap, close to 0. The probability distribution of the sixth-order
AHC that maximises the log-likelihood function for the observed
response data was the Weibull distribution with λ = 3.5951 and k = 
1.6664. In the second case, the probability distribution of the stator
gap was identified as a normal distribution with μ = 0.0487 and σ 
= 0.0160. The probability distribution of the sixth-order AHC was
identified as a minimum Gumbel distribution with μ = 7.0482 and
σ = 1.0715. This can also occur because the normal distribution is
commonly used as a statistical model for manufacturing tolerance.

Although the results are the optimal solutions according to the
proposed method and might be the possible scenarios, the observed
cogging torque data has a slightly different trend compared with its
PDF. There are three possible reasons for this phenomenon. First,

the observed data were generated from one of the identified
probability distributions and the identification results were correct.
As the randomness cannot be controlled or predicted, there is
always a possibility that the results from random samples seem to
be a slightly different from those of the probability distribution,
especially when the number of samples is small as in this case.
Second, some critical design parameters that affect the generation
of the sixth-order AHC were underestimated and should be
considered. Last, the stator gap and sixth-order AHC of the
cogging torque may not follow one of the candidate probability
distributions. In this case, the statistical characteristics of the stator
gap and the sixth-order AHC should be extensively studied and
more candidate probability distributions should be added to obtain
better results.

The application results for the ninth-order AHC are presented in
Fig. 9. The probability distributions for the residual induction and
shifting angle were identified as a maximum Gumbel distribution
with μ = 1.1803 and σ = 0.0147, and log-normal distribution with
μ = –1.3029 and σ = 0.1459 while the probability distribution of the
ninth-order AHC was identified as a GEV distribution with μ = 

Table 6 Candidate probability distributions
Name PDF Domain of definition Parameters
normal f x = 1

2πσ2 e x − μ 2/2σ2 −∞ < x < ∞ −∞ < μ < ∞, − ∞ < σ < ∞

log-normal f x = 1
x 2πσ2 e lnx − μ 2/2σ2 0 < x < ∞ −∞ < μ < ∞, − ∞ < σ < ∞

gamma f x = 1
θαΓ k

xk − 1e−(x/θ) 0 ≤ x < ∞ 0 < k < ∞, 0 < θ < ∞

Weibull
f x = k

λ
x
λ

k − 1
e−(x/λ)k 0 ≤ x < ∞ 0 < λ < ∞, 0 < k < ∞

minimum Gumbel f x = 1
σ e −e (x − μ)/σ + ((x − μ)/σ) −∞ < x < ∞ −∞ < μ < ∞, 0 < σ < ∞

maximum Gumbel f x = 1
σ e− e− (x − μ)/σ + ((x − μ)/σ) −∞ < x < ∞ −∞ < μ < ∞, 0 < σ < ∞

GEV
f x = 1

σ e − 1 + ξ x − μ /σ −(1/ξ) 1 + ξ x − μ
σ

−1 − (1/ξ)
1 + ξ x − μ

σ > 0 −∞ < μ < ∞, 0 < σ < ∞, − ∞ < ξ < ∞

 

Fig. 8  Application results for the sixth-order AHC
(a) Case1: left-skewed distribution for response, (b) Case2: right-skewed distribution for response
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0.3230, σ = 0.8012, and ξ = 2.7331. It is important to note that the
residual induction tended to be left-skewed while the position of
the magnet was slightly shifted. The resulting PDF of the ninth-
order AHC agreed very well with the experimental data.

7 Conclusion
This paper proposes an uncertainty identification method for
uncertainties that are unknown, but inherent in the manufacturing
process of industrial EM devices. This method consists of three
steps. First, ANOVA is performed to investigate the influence of
the design parameters and select the most significant ones to the
response. Second, the kriging surrogate model is constructed by
using DOE techniques and validated through leave-one-out cross-
validation for each response. Finally, the AIC and MLE are
employed to identify the probability distribution of the uncertainty
and to optimise its statistical parameters using the experimental
data. The major advantage of this method is that the computational
time is largely reduced, which helps in dealing with non-linear
characteristics of the response using the kriging surrogate model.
In addition, any type of probability distribution can be considered
by simply adding it in the list of candidate distributions.

To demonstrate the effectiveness of the proposed method, it was
used to identify the uncertainties that caused unexpected cogging
torque in an SPMSM for EPS. As a result, the stator gap was found
to be the most significant design parameter of the sixth-order AHC.
The probability distribution of the stator gap was identified as a
gamma or normal distribution. The residual induction and shifting
angle of the magnet, which were critical design parameters for the
ninth-order AHC, were identified as a maximum Gumbel and log-
normal distribution, respectively. The numerical results also show
that even for extremely small manufacturing tolerances, the
variability of material properties or misalignment of a component
can cause a significantly large amount of the cogging torque in an
SPMSM. To obtain more accurate and reliable results, more
prototype samples are required, which will inevitably increase the
development cost of the motor.

To the authors' best knowledge, this is a novel approach for
systematically identifying the unknown uncertainties that occur in
the manufacturing process of industrial products. The proposed
method can offer a standard guideline for designers and engineers
to utilise in the designing of EM devices, or to predict the potential
problems of the current manufacturing process. The results of this
study and the proposed method will contribute significantly for the
improvement of more robust and reliable motors and reflect
various uncertainties that exist in the real experiment.
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