IEEE TRANSACTIONS ON MAGNETICS, VOL. 59, NO. 11, NOVEMBER 2023 8205305

Computationally Efficient Estimation of PWM-Induced Iron
Loss of PMSM Using Deep Transfer Learning

Soo-Hwan Park™!, Ki-O Kim"?, and Myung-Seop Lim"’?

'Department of Mechanical, Robotics and Energy Engineering, Dongguk University, Seoul 04620, Republic of Korea
*Department of Automotive Engineering, Hanyang University, Seoul 04763, Republic of Korea

As the demand for increasing the efficiency of traction motors for increasing the mileage of electric vehicles, it is necessary to
accurately estimate the efficiency of traction motors at the early design stage. Since the iron loss of the traction motor is highly
affected by the pulse width modulation (PWM) frequency, the PWM current should be considered when designing the motor.
However, it is difficult in considering the PWM current at the early design stage because of its high computation cost due to the
small time step for representing the high-frequency harmonics. Therefore, we propose a method to reduce the computation cost
for the calculation of PWM-induced iron loss using deep transfer learning (DTL) even with a small amount of data. The proposed
method can be achieved by training a deep neural network (DNN) that can predict PWM-induced iron loss accurately using a large
amount of sinusoidal current-based iron loss and a small amount of PWM-induced iron loss. As a result, the PWM current can
be practically considered in the design stage of the traction motor because the computation cost can be decreased by using the
proposed method.

Index Terms— Deep neural network (DNN), iron loss, permanent magnet synchronous motor (PMSM), pulse width modulation
(PWM), transfer learning.

I. INTRODUCTION
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high voltage system are required for traction systems where
permanent magnet synchronous motors (PMSMs) are gener-
ally used [2].

Since the efficiency of the traction motor is directly related
to the electromagnetic loss, it is important to accurately cal-
culate the electromagnetic loss considering the actual driving
conditions in the design stage. In general, high-speed and
low-torque operating points have a major impact on AER,
so the efficiency of the traction motor is highly dependent
on the iron loss [3], [4]. However, the pulse width modulation
(PWM) current affects the iron loss of the traction motor due to
its high-frequency terms [5]. Therefore, if the traction motor is
designed based on the sinusoidal current, without considering
the PWM current, there will be an error between the calculated
efficiency and measured efficiency because of the effect of
PWM harmonics. In order to calculate the iron loss due to the
PWM current, it is necessary to calculate the magnetic flux
density in the ferromagnetic materials by the PWM current.
Zhao et al. [6] proposed an analytical method for calculating
minor loops in non-oriented steel sheets by PWM current. As a

Fig. 1. Geometry and design variables of 16-poles and 24-slots PMSM.

result, it was possible to separate the total iron loss into loss
due to major loop and minor loop. However, in order to calcu-
late PWM-induced iron loss accurately, electromagnetic finite
element analysis (FEA) with PWM current is necessary rather
than the analytical method. Yamazaki and Seto [7] investigated
the iron loss of PMSMs according to the driving condition and
segregated iron loss into components by fundamental wave
and PWM carriers. However, it requires high computation
cost because the electromagnetic FEA should be solved with a
small time step to consider the high-frequency components in
PWM current [8].

In order to reduce the computation cost for calculating
PWM-induced iron loss, we propose a computationally effi-
cient estimation process of PWM-induced iron loss using deep
transfer learning (DTL). The method can be achieved by using
a large amount of sinusoidal current-based iron loss data with
low computation cost and a small amount of PWM-induced

) ) ] iron loss data with high computation cost [9]. The com-
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putational cost of calculating the PWM current-considered
efficiency of the main driving points due to geometry changes
is very high, but the proposed method can dramatically
reduce the computational cost of calculating the PWM current-
considered efficiency.

0018-9464 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Hanyang University. Downloaded on October 25,2023 at 00:35:33 UTC from IEEE Xplore. Restrictions apply.


https://orcid.org/0000-0001-8822-4209
https://orcid.org/0000-0003-4740-2800
https://orcid.org/0000-0002-5339-2728

8205305

TABLE I
SPECIFICATIONS OF TARGET PMSM

Item Unit Value
Number of poles - 16
Number of slots - 24
Nominal battery voltage v 144
Max. output power kW 14.5
Peak torque Nm 45

Max. speed rpm 7,000

Max. current density Arms/mm? 15.0
Switching frequency kHz 12
Operating temperature °C 50
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Fig. 2. Process for calculating PWM-induced iron loss.

II. CALCULATION OF PWM-INDUCED IRON LOSS

In this article, 16-pole and 24-slot PMSM is used to verify
the effect of PWM harmonics on iron loss. Fig. 1 shows
the geometry of 16-pole and 24-slot PMSM, and the design
variables concerned with magnetic saturation and effect on the
iron loss are selected for analysis of the PWM-induced iron
loss of the PMSM. The detailed specifications are listed in
Table 1.

Since the harmonic components of PWM current vary
according to the amplitude, phase, and frequency of the
reference voltage, the current waveform varies according to
the electromagnetic torque and rotational speed of the motor.
The PWM-induced iron loss can be calculated according to
the procedure shown in Fig. 2. In order to calculate the PWM
current waveform according to the drive conditions, it is neces-
sary to calculate the sinusoidal current-based motor parameters
according to the current vector and rotational speed because
d- and g-axis current reference should be derived to input
the values to the controller. Then, the current vector control is
performed to calculate the characteristics of PMSMs according
to the torque and speed as shown in Fig. 3(a). After that, the
PWM current can be derived using MATLAB/Simulink-based
motor-inverter model.

Since the reference voltage is limited by the dc link voltage
in the inverter model, the PWM current is calculated in a
limited region and the region depends on the motor parameters
and rotational speed. In order to reduce the computation
cost for deriving PWM-induced iron loss, the PWM currents
are derived only at the optimized current vector addressed
with torque-speed using the sinusoidal current-based motor
parameter as shown in Fig. 3(b). Then, it is possible to
calculate the iron loss considering PWM current waveform
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Fig. 4. Comparison of magnetic flux density for stator tooth and iron loss
versus frequency under the sinusoidal current and PWM current excitation at
4000 rpm and 10 Nm. (a) Magnetic flux density at stator tooth. (b) Iron loss
versus frequency.

by applying the PWM current to the electromagnetic FEA as
follows:

W = Z_; v, ZI W, (B, fn) (1)

where W; and W/ are the total iron loss and iron loss
density per nth element and mth harmonic, respectively; B’
and f,, are magnetic flux density and frequency, respectively;
and V, is the volume of nth element. Fig. 4(a) and (b)
shows the comparison of the magnetic flux density at stator
tooth in the radial direction and iron loss versus frequency
under the sinusoidal current and PWM current excitation.
It can be seen that the harmonic magnetic flux density in
the stator and rotor core is generated by the PWM current,
and thus the additional iron loss is also generated as shown
in figures. Fig. 5(a) and (b) shows the analyzed iron loss
and efficiency depending on whether the PWM current is
considered according to the torque and speed. It can be seen
that the PWM-induced iron loss is larger than that of the
sinusoidal current-induced iron loss because of additional iron
loss near in PWM frequency band. As a result, the efficiency
of PMSMs is highly affected by the PWM current. Although it
is possible to calculate the accurate efficiency by considering
the PWM current, it requires high computation cost in that an
additional electromagnetic FEA should be performed with a
small time step to consider the PWM frequency.

III. DTL-BASED ESTIMATION OF
PWM-INDUCED IRON LOSS

A. Principle of DTL

Deep neural networks (DNNs) are generally used as a curve
fitting tool in the optimization of electric machines [10]. The
most effective way to improve the performance of DNNs
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Fig. 5. Comparison between iron loss and efficiency whether the PWM
current is considered according to (a) electromagnetic torque and (b) rotational
speed.
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Fig. 6. Effect of DTL with a large amount of source data and a small amount
of target data.

is to increase the amount of data. However, it is difficult
to increase the amount of data when the required cost for
labeling is high such as analyzing the iron loss with PWM
current. DTL is a method that can effectively train DNN
even when we have a small amount of data. The principle
of DTL is as shown in Fig. 6. DTL is a learning technique
that takes domain knowledge of a pre-trained model for the
source dataset and utilized it to train a new neural network for
the target dataset [9]. In other words, the weights of the pre-
trained DNN, w’, are used as the initial value of the weights of
the target DNN, and the transferred weights are re-optimized
to secure the transferred knowledge from the source DNN as
follows:

min £(w) = + i(yi — %) @)

v o

where L is the loss function; n is the number of target datasets;
y; and y; are ground truth and predicted value through the
neural network, respectively.

B. Training Process of DNN for Predicting PWM-Induced Iron
Loss

In this article, a surrogate model of PWM-induced iron loss
is modeled using DTL to predict the efficiency of PMSM
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Fig. 7. Process for training the target DNN using DTL using pre-trained
source DNN.

according to the geometry variation. Fig. 7 shows the process
of training DNN for predicting PWM-induced iron loss using
DTL. DTL is performed by setting PWM-induced iron loss
as the target dataset due to the high computation cost of
data acquisition, and sinusoidal current-based iron loss as the
source dataset due to its similar trend with PWM-induced iron
loss and low computation cost. Since the design variables
are concerned with magnetic saturation, the input layer of
the DNN consists of 11 nodes, which includes the design
variables, d- and g-axis current, and rotational speed, and the
output layer consists of one node to predict iron loss.

The detailed process of obtaining the dataset is as follows.
First, the design of experiments is performed on the design
variables. The design points are selected using Latin hypercube
sampling (LHS), and the peak current is calculated using the
current density and slot area determined by the geometry of
the PMSM as follows:

[ pk — JmaxAblmTckcu (3)
where i, and Jp.x are the peak current and maximum
current density, respectively; Ago and k¢, are the slot area
and effective slot fill factor without considering insulation
of copper wire; N, is the number of conductors per slot.
Then, d- and g-axis current and rotational speed can be
sub-sampled based on the maximum current at each design
point, and the motor parameters consisting of d- and g-axis
inductance, flux-linkage, and iron loss per design point are
analyzed with the sinusoidal current. Thus, the source dataset
can be built consisting of the design variables, d- and g-axis
current, and the rotational speed and corresponding sinusoidal
current-based iron loss. Meanwhile, LHS-based sub-sampling
according to the design point is performed to optimize the
current vector for PWM current-based iron loss analysis
within the maximum torque and power of the PMSM. Finally,
the PWMe-induced iron loss can be analyzed and the target
dataset is constructed with the design variables, d- and ¢-
axis current, and rotational speed. Since the PWM-induced
iron loss requires high computation cost, the number of target
datasets is 8.6% of the number of source datasets.

After that, the source and target DNNs are trained with
source and target datasets using DTL. The architecture of
DNN is set as multi-layer perceptron (MLP), and the detailed
training conditions and a number of datasets are shown in
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TABLE II
HYPERPARAMETER SETTING OF DNN AND NUMBER OF DATASETS

Input features Design variables of PMSM, i 4, Wm

Output features Wi 1st Wi pwm
Number of layers 4
Number of units 256
Learning rate le-5
Activation function ReLU
Optimizer Adam

Loss function
Size of mini-batch 32
63,000 (Source)

Mean squared error

Number of dataset 3,640 (Target)
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Fig. 8. Training and validation loss for building DNN to predict.

(a) Sinusoidal current-based iron loss. (b) PWM-induced iron loss.
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Fig. 9. Comparison of ground truth and predicted result for PWM-induced
iron loss with or without using DTL.

Table II. As a result of hyperparameter tuning, the number of
hidden layers, units, and learning rate were selected as 4, 256,
and le-5, respectively. In order to avoid overfitting the source
and target dataset were divided into training, validation, and
test sets with a ratio of 8:1:1. In order to utilize the domain
knowledge of the source DNN that has a similar distribution
to the target dataset, the layers of the target DNN except for
several top layers are transferred from the pre-trained layers
of source DNN. Then, the target DNN is additionally trained
using the target dataset.

Fig. 8(a) and (b) shows the learning curves of source and tar-
get DNN for predicting sinusoidal current-based iron loss and
PWM-induced iron loss. In order to verify the effectiveness
of DTL, the results with or without using DTL are compared.
It can be seen that the training and validation loss of source
DNN converged at low values without overfitting because the
number of source datasets is large enough. However, it can
be seen that the loss quickly converged to a relatively high
value as a result of training the target DNN without DTL.
This is because the number of training data is very small
and overfitting to the validation set occurred at an early in
the training process. On the other hand, it can be seen that
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Fig. 10. Fabricated specimen consists of (a) stator and rotor for verifying
PWMe-induced iron loss and (b) experimental setup for a load test.
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of the specimen.

the loss converged to a low value through sufficient training
by using DTL. Fig. 9 shows the comparison of ground truth
and prediction for PWM-induced iron loss with or without
using DTL. As a result of using DTL, it can be seen that
the regression performance on the test dataset was highly
well evaluated, where the normalized root mean squared error
(NRMSE) is 3.6%, and as a result of the training from scratch
without using DTL, it can be seen that the performance
was degraded, where NRMSE is 7.1%, due to the target
DNN was overfitted to the training dataset. Consequently, the
prediction of PWM-induced iron loss can be conducted with
high accuracy even with a small amount of dataset by using
DTL.

IV. EXPERIMENTAL VERIFICATION

In order to verify the predicted results of PWM-induced iron
loss, a specimen located within the design variable range was
fabricated and a load test was conducted. Fig. 10(a) and (b)
shows the fabricated specimen and experimental setup. Before
conducting the load test, the measured and simulated no-load
back-electromotive force (Back EMF) were compared to verify
the magnetic circuit of the specimen as shown in Fig. 11.
The measurement was performed at room temperature and the
no-load Back EMF was measured at 1000 rpm. It can be seen
that the error was 1.5% so the results from the electromagnetic
FEA have consistency with the experiment.

The load test was performed at 2100 rpm, 12.5 Nm, and
4100 rpm, 12.5 Nm to verify the PWM-induced iron loss
predicted using DTL. Since the iron loss is caused by the
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magnetic flux density fluctuations in the stator and rotor
core, the iron loss is caused by the fundamental wave of
the current waveform and the harmonics near PWM bands.
Since the consistency between experiments and FEM analysis
of sinusoidal current-based and PWM current-based iron loss
was verified by [11], the PWM-induced iron loss was verified
in this article. First, the PWM current was compared to verify
the consistency of the data used for training DNN as shown in
Fig. 12(a) and (b). Since the PWM voltage was controlled at a
switching frequency of 12 kHz, a harmonic band was observed
around twice the switching frequency, and the simulation
results also showed the same result. In addition, the small
error of the amplitude of the harmonic current refers that
the error of the motor parameters used in the simulation was
also small. Fig. 13 shows the result of comparing the loss
and efficiency considering PWM-induced iron loss predicted
through the proposed method and the measured efficiency. The
mechanical loss and dc copper loss were considered in the
calculation of efficiency, but permanent magnet eddy current
loss was not considered. As a result of using DTL, the error
of total loss between the experiment and predicted result using
DTL was 3.3% and 3.5%, respectively, and 0.2%p and 0.2%p
for efficiency, respectively. It can be seen that the efficiency
was predicted at a reasonable level so that the proposed method
can be widely used for optimizing the efficiency of PMSM
because the efficiency considering the PWM-induced iron loss
can be predicted with a very small computation cost.

V. CONCLUSION

When calculating the PWM-induced iron loss, high com-
putation cost is required because the process for deriving
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the PWM current waveform and short time step electromag-
netic FEA are involved. Therefore, a computationally efficient
method for the prediction of PWM-induced iron loss of PMSM
is proposed using DTL in this article. First, the difference
in PWM current waveforms according to the operating point
and the effect of PWM-induced iron loss on the efficiency
of PMSM was analyzed. Then, the principle of DTL for
training a surrogate model that predicts PWM-induced iron
loss with high accuracy using a large amount of sinusoidal
current-based iron loss and a small amount of PWM-induced
iron loss was described. The performance of the surro-
gate model was verified by applying the proposed method
to a 16-pole and 24-slot PMSM. Finally, a specimen was
fabricated for experimental verification, and simulation and
experiment results of PWM current and efficiency were
compared.
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