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H I G H L I G H T S

Detailed modeling of the fuel cell electric vehicle was performed.
Wide variation of DC link voltage due to fuel cell characteristics was considered.
Effect of the air supply system on fuel cell performance was reflected.
Adoptive layering and sampling algorithm for deep neural network was suggested.
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A B S T R A C T

This study proposes a modeling and optimization methodology for fuel cell electric vehicles (FCEVs). Among
FCEV components, the traction motor, lithium-ion battery, fuel cell stack, and air supply system are mainly
investigated. The FCEV modeling is performed based on the vehicle specifications, electromagnetic finite
element analysis, and experimental data. To conduct design optimization, deep neural networks (DNNs) are
adopted and trained to predict vehicle performance considering the fluctuation of applied direct current
voltage. At this stage, the adaptive layering and sampling algorithm was suggested, which enables efficient
DNN construction. To confirm the feasibility of the suggested training algorithm, the number of hidden layers
and sampling points of constructed DNNs are investigated. Finally, DNN-based fuel economy optimization is
performed considering the driving performance. The effectiveness of the proposed optimization methodology
is validated by additional optimization results.
∗ Corresponding author.
E-mail address: myungseop@hanyang.ac.kr (M.-S. Lim).
vailable online 27 March 2024
378-7753/© 2024 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.jpowsour.2024.234401
Received 23 November 2023; Received in revised form 11 February 2024; Accepte
d 19 March 2024

https://www.elsevier.com/locate/jpowsour
https://www.elsevier.com/locate/jpowsour
mailto:myungseop@hanyang.ac.kr
https://doi.org/10.1016/j.jpowsour.2024.234401
https://doi.org/10.1016/j.jpowsour.2024.234401
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpowsour.2024.234401&domain=pdf


Journal of Power Sources 603 (2024) 234401D.-M. Kim et al.
1. Introduction

Following the Paris Agreement, efforts to reduce greenhouse gas
(GHG) emissions have increased worldwide [1]. Moreover, several
commercial vehicle manufacturers have planned to stop the produc-
tion of pure internal combustion engine (ICE) vehicles [2]. Based on
this GHG mitigation tendency, fuel cell electric vehicles (FCEVs) are
treated as candidates for future eco-friendly mobility [3,4]. This basis
originates from the fact that FCEVs purify air and emit pure water. In
addition, FCEVs account for less refueling time and exhibit superior
driving range compared with battery electric vehicles (BEVs)

In recent times, the commercialization of FCEVs has been driven by
several countries. However, several obstacles need to be addressed. The
representative impediments are refueling stations, cost, durability, and
performance of FCEV [5]. Among them, performance and convenience
play important roles in the mass production of FCEVs. Therefore,
performance improvement is one of the crucial aspects that need to
be solved.

As listed in Table 1, the literature survey has been previously
conducted to set the direction of this study. This survey included papers
published after 2016, and the topics were xEV design and optimization.
More than half of the studies adopted a sizing method to optimize
vehicles [6–14]. There are two categories of sizing. One category
sizes the powertrain and source simultaneously [6–10], whereas the
other category sizes power source only [11–14]. Moreover, studies on
FCEVs were conducted based on FC stack and battery sizing [9–14].
Furthermore, studies on topology change play a major factor [15–
18]. In the case of EV design, multi-motor methodology is mainly
selected [15–17]. In addition, vehicle design based on electric motor
geometry optimization [19,20] and winding connection changes [21]
exist.

However, [6,19,21] well considered the electric motor character-
istics based on the electromagnetic finite element analysis (FEA). Al-
though several studies on the air compressor motors of FCEVs have
been conducted [22–25], the design process for FCEVs has not been
considered. Moreover, the fluctuation characteristics of the output
voltage of the FC stack have not been reflected.

Prior concerns for improving the performance of an FCEV are reduc-
tion in weight and increase in power density of the fuel cell stack need
to be prioritized. For this objective, oxygen at a higher flow rate and
higher pressure should be supplied to the stack [26,27]. Accordingly,
the output power and rotation speed of the air compressor driver
electric motor should be increased. Therefore, the air supply system
including the air compressor motor should be considered as the main
component in the FCEV design process. Moreover, the output voltage of
the FC exhibits a wide variation range [28,29]. Therefore, wide voltage
fluctuations should be considered to estimate the performance of the
traction and air compressor motors.

This study suggests the modeling and optimization methodology
of FCEVs considering the air supply system for the FC stack and
polarization characteristics of the FC stack. The performance of the air
compressor has been considered in FC stack performance. Furthermore,
the wide variation in the DC link voltage (FC stack output voltage) is
considered while estimating the performance of electric motors. In this
process, deep neural networks (DNNs) are constructed to reduce the
computation time. For efficient DNN generation, an adaptive layering
and sampling (ALS) algorithm is proposed. The contributions of this
study can be summarized as follows:

• The detailed modeling of the fuel cell electric vehicle was per-
formed.

• The wide variation of DC link voltage caused by fuel cell stack
characteristics was considered.

• The air supply system for the proton exchange membrane fuel cell
stack was reflected.

• The adoptive layering and sampling algorithm for deep neural
network construction was suggested.
2

The study comprises modeling, neural network training, and op-
timization and is organized as follows: First, specifications and rele-
vant information are introduced. Second, electric powertrain modeling
based on electromagnetic FEA is presented. Third, the hybrid modeling
of the air supply system is performed based on the real and computer-
based experimental results. In the last stage of the modeling process,
the lithium-ion battery and FC stack are modeled. The proposed ALS
algorithm is explained for neural network construction. Using this
algorithm, the electric motor performance surrogate modeling based
on the size of the electric motors and DC link voltages is conducted
for the traction and air compressor motors. These electric-motor DNNs
were implanted to the FCEV simulation model. Fourth, using this sim-
ulation model, the FCEV trace performance analysis and fuel economy
surrogate modeling based on the sizing of the two electric motors
are performed. Finally, based on the FCEV DNNs, the fuel economy
optimization of FCEV is achieved.

2. Method part 1: FCEV modeling

This part explains the proposed FCEV modeling methodology. As
shown in Figure S1, utilizing MATLAB Simulink, an FCEV was modeled.
The driver model, reduction gear, drive axle, wheel, and vehicle block
were adopted from the Powertrain Blockset of Simulink. The FC stack
was considered as a detailed version from the Simscape library; this ver-
sion can exhibit oxygen flow. Other parts, e.g., supervisory controller,
battery, converter, inverter, air compressor, and air compressor motor,
were modeled using a customized process. A supervisory controller
block was modeled to control traction and air compressor motors. In
addition, the power and energy management for the battery and FC
stack plays an important role. Sections 2.1–2.3 explain the electric
powertrain, air supply system, and power sources.

The target vehicle of this study is Hyundai NEXO, which is a
mid-sized sports utility vehicle. The specifications are listed in Ta-
ble 2 [30]. They are based on a 17-inch wheel-equipped condition.
Then, the vehicle, drive axle, and wheel were modeled. In particular,
government-certified standard fuel efficiency allowed the FCEV model
to reflect unknown losses.

Table 3 lists the brief specifications of the main components of the
FCEV [31]. The configuration is estimated from the input and output
voltages of power electronic devices and power sources. The level of
the bidirectional DC/DC converter input voltage includes the rated
battery voltage. Therefore, it was inferred that the input terminal of the
bidirectional DC/DC converter is connected to the battery. The range
of the battery output voltage is estimated to be the same as that of the
bidirectional DC/DC converter input voltage. Conversely, the output
voltage of the bidirectional DC/DC converter was the same as that of
the FC stack. Accordingly, it is assumed that the bidirectional DC/DC
converter would convert the battery voltage to the FC stack voltage.
In addition, it can be assumed that the converter-equipped battery is
connected parallel to the FC stack. Consequently, this study modeled
this terminal as the DC link voltage with regard to the inverter of
electric motors.

2.1. Electric powertrain

The electric powertrain includes a single reduction gear and an
electric traction motor. This section demonstrates the performance
calculation of the electric traction motor and the modeling process.
Table 4 lists the specifications of the electric traction motor. We con-
sidered 8 poles and 48 slots, which are widely used for EV traction.
The maximum speed was inversely calculated based on the wheel
size, reduction gear ratio, and maximum vehicle speed. The derived
relationship is expressed in Eq. (1), where 𝑁MAX is the maximum
rotational speed of the motor (rpm), 𝑛g is the reduction gear ratio, 𝑟w
is the wheel radius of the tire (m), and 𝑉 MAX is the vehicle maximum
speed (m/s).



Journal of Power Sources 603 (2024) 234401D.-M. Kim et al.
Table 1
Previous study on vehicle design and optimization based on component sizing.

Method Target Design
variable

Vehicle
model

Motor
model

Ref.

Sizing

Overall
sizing

HEV EM.Lstk, ng,
Batt.P, Gen.P

1D model FEA based [6]

HEV EM.P,
Batt.Ns, Batt.Np

1D model EMC based [7]

HEV EM.P, ng, ICE.P
Batt.Ns, Batt.Np
SC.Ns, SC.Np

1D model Omitted [8]

FCEV EM.T,
Batt.P,FC.P

1D model Assumption [9]

FCEV EM.T,
Batt.P,FC.P

1D model Assumption [10]

Source
sizing

FCEV Batt.P, FC.P Equation Omitted [11]

FCEV Batt.P, FC.P Driving data Omitted [12]

FCEV Batt.P, FC.P 1D model Assumption [13]

FCEV Ref.P,
Batt.P, FC.P

Equation Assumption [14]

Electric motor
optimization

EV EM.Geometries Equation FEA based [19]

EV EM.Geometries Equation Equation [20]

Layout
change

Dual
motor

EV T1, T2, ng1, ng2 1D model Assumption [15]

EV T1, T2, ng1, ng2 Equation Equation [16]

Multimotor EV NEM,
EMS.T, EMS.S

Equation Equation [17]

Config. HEV EMs.P,
ngs, ICE.P

1D Model Assumption [18]

Winding
changeover

EV N1 : N2 1D model FEA based [21]
Table 2
Specification of the target fuel cell electric vehicle.

Items Value Unit

Drag coefficient 0.329 –
Driving system Front-wheel driving –

Empty vehicle weight 1820 kg

Government
-certified
standard
fuel efficiency

Combined 2.86 km/kWh

City 2.96 km/kWh

Highway 2.76 km/kWh

Maximum speed 177 km/h
Overall length 4670 mm
Overall width 1860 mm
Overall height 1630 mm

Wheel diameter 432 mm

𝑁𝑀𝐴𝑋 =
𝑛𝑔 × 60
2𝜋𝑟𝑤

× 𝑉𝑀𝐴𝑋 (1)

The nominal DC voltage was assumed based on the average value
of the voltage–power curve of the FC stack. Permanent magnets and
electrical steel sheets are widely used in EV traction motor production.
The rotor type adopted was the second layer V-type, which is commonly
used. The estimated cross-sectional area of the electric traction motor
is shown in Figure S2. Based on the cross-sectional area and these
conditions, the size and number of armature turns were estimated to
satisfy the maximum output power range and maximum speed. This
process was conducted using an electromagnetic FEA.

Based on the determined electric motor geometries, the performance
evaluation process was performed (Figure S3) [32]. Utilizing electro-
magnetic FEA, the lumped parameters, i.e., d- and q-axis inductances
𝐿𝑑 and 𝐿𝑞 , linkage flux 𝛹𝑎, and iron loss were first calculated for
various input-current conditions. Then, considering the DC link voltage,
3

Table 3
Specifications of the main components.

Items Value Unit

Electric
powertrain

Motor type IPMSM –
Motor maximum output 113 kW
Motor maximum torque 395 Nm
Reduction gear ratio 7.981:1 –

Inverter Input voltage 240–450 V

Bidirectional
DC/DC converter

Input voltage 160–275.2 V
Output voltage 250–450 V

Fuel cell stack Maximum output power 95 kW
Output voltage 250–450 V

Battery

Type Li-ion polymer –
Rated voltage 240 V
Capacity 6.5 Ah
Energy 1.56 kWh
Weight 51.2 kg

Fuel tank Capacity 156.6 L

Table 4
Specifications of the electric traction motor.

Items Value Unit Note

Pole/Slot number 8/48 – –
Maximum output power 113 kW @3000–4600 rpm
Maximum torque 395 N m –
Maximum speed 10600 rpm Assumption

based on
specification

Nominal DC voltage 280 V
Maximum current 449.7 Arms
Maximum current density 22.6 Arms/mm2

the MTPA current was determined based on the 𝑑-𝑞 equivalent circuit
according to Eqs. (2)–(4), where 𝑅𝑎 is the armature winding resistance,
𝑅𝐼 is the equivalent iron loss resistance, 𝑣𝑑 is the 𝑑-axis voltage, and

𝑣𝑞 is the 𝑞-axis voltage. 𝑣𝑜𝑑 and 𝑣𝑜𝑞 are the induced voltages of the
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Fig. 1. Configuration of air supply system for FC stack.

Table 5
Specifications of the air compressor motor.

Items Value Unit Note

Pole/Slot number 2/6 – –
Maximum output power 10 kW @100000 rpm
Maximum torque 0.96 N m –
Maximum speed 100000 rpm –
Nominal DC voltage 280 V Same as traction motor
Maximum current 48.2 Arms –
Maximum current density 8.5 Arms/mm2 –

𝑑 and 𝑞 axes, respectively, and 𝜔 indicates the electrical rotational
angular speed. 𝑖𝑑 and 𝑖𝑞 are the armature currents of the 𝑑 and 𝑞 axes,
respectively. 𝑖𝑜𝑑 and 𝑖𝑜𝑞 are the iron loss-subtracted values of the 𝑑- and
𝑞-axis currents, respectively, which are obtained from the equivalent
iron loss resistance. Finally, in addition to the torque T and speed
condition, an efficiency map was generated using Eq. (5).

[

𝑣𝑑
𝑣𝑞

]

= 𝑅𝑎

[

𝑖𝑜𝑑
𝑖𝑜𝑞

]

+
(

1 +
𝑅𝑎
𝑅𝐼

)[

𝑣𝑜𝑑
𝑣𝑜𝑞

]

+ 𝑝
[

𝐿𝑑 0
0 𝐿𝑞

] [

𝑖𝑜𝑑
𝑖𝑜𝑞

]

[

𝑣𝑜𝑑
𝑣𝑜𝑞

]

=
[

0 −𝜔𝐿𝑞
𝜔𝐿𝑑 0

] [

𝑖𝑑
𝑖𝑞

]

+
[

0
𝜔𝛹𝑎

]
(2)

𝑇 = 𝑃𝑝
{

𝛹𝑎𝑖𝑜𝑞 +
(

𝐿𝑑 − 𝐿𝑞
)

𝑖𝑜𝑑 𝑖𝑜𝑞
}

(3)

𝑊𝐶 = 𝑅𝑎

(

𝑖2𝑑 + 𝑖2𝑞
)

(4)

𝜂𝑒𝑚 =
𝜔𝑚𝑇

𝜔𝑚𝑇 +𝑊𝐶 +𝑊𝐼
(5)

2.2. Air supply system

The performance of the air compressor is considered for the air
supply system. As shown in Fig. 1, the air compressor comprised an
electric motor, inlet valve angle controller, and electric motor speed
controller. In the electric motor part, an impeller to compress the input
air is connected to the rotor of the electric motor. In addition, thrust
runners, thrust bearings, and journal bearings are installed. The perfor-
mance of the electric motor was analyzed based on the electric traction
motor mechanism, without considering the rotor loss calculation. The
other parts were considered based on the experimental results.

To estimate the performance of the air compressor motor, the cross-
sectional area, as shown in Figure S4, was used. The specifications of
the air compressor motor are listed in Table 5. Based on the geometry
and specifications, the performance of the air compressor motor was
calculated using the same calculation process as that of the traction
motor, as explained in Section 2.1. However, unlike traction motors,
air compressor motors possess retaining sleeves that conduct eddy
currents. In addition, the operating rotational speed is very high.
4

Table 6
Polynomial fitting evidence with regard to the performance of the air compressor.

Fitting equation Goodness of fit Value

Airflow rate Air pressure Load torque

2nd order R-squared 0.9996 0.9987 0.9986
RMSE 1.597 0.009233 0.00682

3rd order R-squared 0.9999 0.9997 0.9992
RMSE 0.9871 0.004833 0.005282

4th order R-squared 0.9999 0.9997 0.9992
RMSE 0.7626 0.004916 0.005486

5th order R-squared 0.9999 −7.102 −38.21
RMSE 0.7136 0.7967 1.263

6th order R-squared 0.9999 −27630000 −508200000
RMSE 0.7572 1552 4795

Therefore, an air compressor motor experiences a large eddy current
loss [33].

To precisely consider the eddy current loss to predict the motor
performance, 3D FEA should be performed in addition to other anal-
yses. However, the calculation of eddy current loss using 3D FEA for
all the predicted operating points is time-consuming. To overcome this
high computation time, the eddy current loss estimation process was
adopted (Figure S5) [34].

Subsequently, the test-oriented compression performance modeling
was achieved. As shown in Fig. 2, the experimental setup was prepared.
Using this test bench, the air pressure and flow rate were measured at
various electric motor speeds and inlet valve angles.

Based on the test results of the air compressor, the empirical models
were generated to analyze the compression performance. The generated
models are illustrated in Figure S6. The surfaces indicate derived
models, and the spheres indicate measured points or estimates from the
measured points. These surfaces originated from the polynomial fitting
of the spheres. The polynomial order of each model was determined
based on the goodness of fit. The coefficient of determination (R2) and
root mean square error (RMSE) were adopted as the goodness of fit
parameters. For the airflow rate, air pressure, and load torque, the fifth,
third, and third polynomial orders were determined, respectively. The
polynomial fitting results are listed in Table 6.

2.3. Power sources

In this study, the power sources of the FCEV include a PEMFC and
lithium-ion battery. The PEMFC is the main source, and the lithium-ion
battery is the auxiliary source.

For the PEMFC modeling, the equivalent circuit suggested by
Larminie and Dicks was adopted [35]. The model is illustrated in
Fig. 3. The detailed model in the MATLAB Simulink library was
used to demonstrate the performance of the air supply system. The
corresponding equations are expressed as Eqs. (6)–(14) [36].

𝐸 = 𝐸𝑜𝑐 −𝑁𝐴 ln
( 𝑖𝑓𝑐

𝑖0

)

⋅
1

𝑠𝑇𝑑∕3 + 1
(6)

𝑉𝑓𝑐 = 𝐸 − 𝑅𝑜ℎ𝑚 ⋅ 𝑖𝑓𝑐 (7)

𝐸𝑜𝑐 = 𝐾𝑐 ⋅ 𝐸𝑛 (8)

𝑖0 =
𝑧𝐹𝑘

(

𝑃𝐻2
+ 𝑃𝑂2

)

𝑅ℎ
⋅ exp

(−𝛥𝐺
𝑅𝑇

)

(9)

𝐴 = 𝑅𝑇
𝑍𝛼𝐹

(10)

𝑈𝑓𝐻2
=

60000𝑅𝑇 𝑖𝑓𝑐 (11)

𝑧𝐹𝑃𝑓𝑢𝑒𝑙𝑉𝑓𝑢𝑒𝑙𝑥%



Journal of Power Sources 603 (2024) 234401D.-M. Kim et al.
Fig. 2. Air compressor test bench.
Fig. 3. Proton membrane exchange fuel cell model (a) equivalent circuit, (b) fuel cell modeling, (c) air supply system modeling.
𝑈𝑓𝑂2
=

60000𝑅𝑇 𝑖𝑓𝑐
2𝑧𝐹𝑃𝑎𝑖𝑟𝑉𝑎𝑖𝑟𝑦%

(12)

𝑃 =
(

1 − 𝑈𝑓
)

𝑥%𝑃 (13)
5

𝐻2 𝐻2 𝑓𝑢𝑒𝑙
𝑃𝑂2
=
(

1 − 𝑈𝑓𝑂2

)

𝑦%𝑃𝑎𝑖𝑟 (14)

Here, 𝐴 denotes the Tafel slope; 𝐸𝑛 and 𝐸𝑜𝑐 denote the Nernst and
open-circuit voltage, respectively; ℎ is Planck‘s constant; 𝑖0 and 𝑖𝑓𝑐
denote the exchange and FC currents, respectively; 𝑘 and 𝐾 denote
𝑐
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Fig. 4. Lithium-ion battery model (a) equivalent circuit, (b) open-circuit voltage, (c)
resistance, (d) capacitance.

Boltzmann‘s constant and voltage constant, respectively; 𝑃𝑎𝑖𝑟 and 𝑃𝑓𝑢𝑒𝑙
denote the absolute supply pressures of air and fuel, respectively; 𝑃𝑂2
and 𝑃𝐻2

denote the partial pressures of oxygen and hydrogen insider
stack, respectively; 𝑅𝑜ℎ𝑚 is the internal resistance; 𝑇 and 𝑇𝑑 denote
the operating temperature and response time, respectively; 𝑈𝑓𝑂2

and
𝑈𝑓𝐻2

denote the utilization rates of hydrogen and oxygen, respectively;
𝑉𝑎𝑖𝑟, 𝑉𝑓𝑢𝑒𝑙, and 𝑉𝑓𝑐 denote the flow rates of air, fuel, and FC voltage,
respectively; 𝑥 and 𝑦 denote the percentages of hydrogen and oxygen
in fuel and air, respectively; 𝑧 is the number of moving electrons; 𝛼
is the charge transfer coefficient; 𝛥𝐺 is the activation energy barrier.
The oxygen excess ratio, which indicates the supplied oxygen ratio
compared with the oxygen consumption ratio, was assumed to be 2.
This constant control setup can achieve the normal performance of the
FC stack [37–39].

In the case of lithium-ion battery modeling, a second-order R-
C paired equivalent circuit was adopted to reflect the consecutive
charge/discharge situations that occur in real driving conditions. The
equivalent circuit and corresponding coefficients are shown in Fig. 4
[40,41].

2.4. Energy management

The energy management strategy was estimated from real driving
data. The real driving data was measured from actual driving FCEV
driven as a drive cycle as shown in Figure S7. First, a rule-based energy-
management strategy was developed. The SOC of lithium-ion battery
and output power request, EV mode, FC mode, and hybrid source
modes were designed. The EV and FC modes represent the battery-
only and FC-only modes, respectively. In the H1 mode, the FC charges
the battery and drives the vehicle simultaneously, whereas in the H2
and H3 modes, the FC and battery drive the vehicle. In the H2 mode,
the FC is operated at the upper boundary of the efficient region, and
the battery is operated to assist the remaining required power. In the
H3 mode, the battery is operated at maximum power, and the FC is
operated at the remaining required power. This strategy is illustrated
in Fig. 5.

Then, the thresholds of the energy management strategy were op-
timized to minimize the difference between the simulated and real
driving data. The normalized RMSE (NRMSE) of the simulation and
real driving data was set as the objective function and minimized.
6

Fig. 5. Rule-based energy management strategy.

Fig. 6. Comparison of the FC output profiles based on the test and simulation results.

The normalized FC output profiles of the simulation and real data are
compared in Fig. 6.

However, there are still some errors between the results of the
test and the simulation. This occurs since the real driving test was
conducted in the valley area, which can be recognized from Figure
S7 (b). This valley condition included the fluctuation of atmosphere
pressure. In addition, the performance of the fuel cell stack is dependent
on ambient pressure [42]. Therefore, the consideration of ambient pres-
sure change in this simulation is hard, and this remained a limitation
of this study.

3. Method part 2: FCEV optimization

This part introduces the deep neural network (DNN) construction
and design problem formulation. The DNN was adopted to conduct
FCEV optimization using the modeled FCEV, as described in Section 2.
This process was performed based on the MATLAB neural network tool-
box [43]. The Sigmoid function was used as the activation function, and
the Bayesian regularization algorithm was used for back-propagation.
The numbers of sampling points and hidden layers were adaptively
determined, and this process is explained in Section 3.1. Using the
proposed algorithm, the DNNs of the electric motors and FCEV were
constructed. Finally, the design formulation for FCEV fuel economy
optimization was presented.

3.1. Adaptive layering and sampling algorithm

To efficiently construct the DNN, the ALS algorithm was suggested
(Figure S7 in supplementary materials). This algorithm allows the DNN
structure to differ according to the regression value of the test set
𝑅 . Initial sampling was conducted based on optimal Latin hypercube
𝑇 𝑒𝑠𝑡
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Fig. 7. Construction of fuel cell electric vehicle network.
sampling (OLHS), and additional sampling was performed based on
maximin distance sampling (MDS) [44,45]. Subsequently, according to
the 𝑅𝑇 𝑒𝑠𝑡 variation, additional sampling and layering were performed.
Finally, if the 𝑅𝑇 𝑒𝑠𝑡 value was successively greater than 0.99, the DNN
construction was completed. In addition, the sampling points for this
process were determined using Eq. (15).

𝑁𝑠 =

{

10 × 𝑛𝑣, if 𝑠 = 1
0, otherwise 𝑠 = 2, 3, 4,…

(15)

3.2. Electric motor networks

The electric motor DNNs were constructed for the traction and
air compressor motors. The trained responses included the maximum
torque and total loss. The maximum torque was estimated according
to the number of armature turns, stack length of the motor, DC link
voltage, and motor speed. The total loss was estimated under the
same conditions set for the maximum torque estimation, along with
the output torque. The range of the conditions was determined based
on electrical and mechanical limits. In particular, the maximum speed
was determined based on the mechanical stress analysis results of the
ANSYS commercial software (Figure S8) [46,47].

3.3. FCEV network

The FCEV DNNs were constructed for the energy consumption and
driving cycle trace NRMSE, which can predict the performance of
the vehicle. During this procedure, to exhibit the FC output voltage
variation to the two electric motors and consider the sizing of the
two electric motors, the constructed DNNs of electric motors were
implanted to the FCEV model. The concept of this methodology of FCEV
modeling is illustrated in Fig. 7.

3.4. Optimum design problem formulation

To perform the design optimization of the FCEV, the design problem
formulation was performed as follows:

Objective function : minimize 𝑓 (𝐱)

Design variables: 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5

Subjected to

Inequality constraint : 𝑔(𝐱) ≤ 5%

Variable bounds : 0.5 ≤ 𝑥1 ≤ 2, 0.7 ≤ 𝑥2 ≤ 3,

4 ≤ 𝑥 ≤ 9.13, 0.5 ≤ 𝑥 ≤ 2, 0.7 ≤ 𝑥 ≤ 2
7

3 4 5
Table 7
The fuel economy simulation result from developed FCEV model.

Drive cycle Fuel economy (km/kWh)

Government-certified FCEV model

City (FTP75) 2.96 2.97
Highway (HWFET) 2.76 2.65
Combined
(City×0.55+ Highway×0.45)

2.86 2.83

Here, 𝑓 denotes the energy consumption of the FCEV, 𝑔 denotes
the trace NRMSE, indicating the difference between the drive cycle and
simulation profile. The design variables 𝑥1 and 𝑥2 are the normalized
values of the number of armature turns and stack length of the traction
motor, respectively. 𝑥3 is the gear ratio of the reduction gear, and 𝑥4
and 𝑥5 are the normalized values of the number of armature turns and
stack length of the air compressor motor, respectively. The ranges of
the armature turns were determined to satisfy thermal and electrical
constraints. The stack length of the traction motor is determined based
on the size limit. However, the stack length of the air compressor
motor is constrained by the rotor-dynamical reason, i.e., the bending
mode frequency [48]. Finally, the range of the reduction gear ratio is
determined to satisfy the maximum vehicle speed.

4. Results

4.1. FCEV modeling result

For the developed FCEV model, the mechanical loss curve based on
the vehicle speed was adopted, and the losses of other parts losses were
considered. In this step, the loss curve was determined to minimize
the error in the fuel economy of cities, highways, and combined cycles
between the government-certified and simulation values (Table 7).

To investigate the FCEV modeling result, the vehicle simulation was
conducted. The purpose of this simulation was to determine whether
the components were modeled well, and the drive cycle was adopted
to simulate the FCEV under various conditions (Figure S10).

According to the drive cycle shown in Figure S9, the vehicle simu-
lation was conducted, and the results are depicted in Figure S10. The
FC voltage variation characteristics according to the FC current are
described. The airflow rate and air pressure of the air supply system
were simulated, and the corresponding air compressor motor speed and
torque were demonstrated.

In addition, the operating points of the traction motor are illustrated
in Fig. 8. The blue squares represent the FC voltage constant conditions,
and the orange circles represent the FC voltage variation conditions.
From this result, it can be confirmed that the effect of FC voltage
variation on the FCEV traction system was well-reflected.
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Fig. 8. Operating points of the traction motor.

Table 8
Adaptive layering and sampling results of the electric motors.

Items Number of

Hidden layers Sampling points Data sets

Traction motor
maximum torque

10 114 2166

Traction motor
total loss

18 258 251 136

Air compressor
motor
maximum torque

31 462 49 564

Air compressor motor
total loss

5 60 840

Table 9
Adaptive layering and sampling result for FCEV.

Items Number of

Hidden layers Sampling points Data sets

Fuel economy 10 250 250
Trace NRMSE 11 255 255

4.2. DNN construction result

Using the ALS algorithm, as suggested in Section 3.1, the DNNs
were constructed. The DNN construction results of the two electric
motors are listed in Table 8. The construction profiles based on the
ALS algorithm are shown in Figure S12 in supplementary materials.

Moreover, the FCEV DNNs were constructed using the ALS algo-
rithm. This process was performed after the DNNs of two motors
were integrated into the FCEV model. The DNN construction results
of fuel economy and trace NRMSE are listed in Table 9. The construc-
tion profiles based on the ALS algorithm are shown in Figure S13 in
supplementary materials.

These results show the effectiveness of the ALS algorithm. All the
surrogate models were constructed with different numbers of hidden
layers and sampling points. In addition, the range of difference in
the number of hidden layers and sampling points is quite broad. This
can be interpreted suggested the ALS algorithm helps to train the
deep neural network minimizing the computing time and achieving the
target accuracy.

4.3. FCEV optimization result

The FCEV optimization was conducted under various drive cycles
with various weightings. The target cycles were FTP75, HWFET, and
the test cycle, as depicted in Figure S7 of supplementary materials. As
listed in Table 10, various weightings are applied and numbered. These
various weightings can simulate whether the suggested modeling and
optimization method is effective or not because they can act as various
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Table 10
FCEV optimization models according to the weightings of the
drive cycles.

Model
number

Weighting

FTP75 HWFET Test cycle

1 1 0 0
2 0 1 0
3 0 0 1
4 1/3 1/3 1/3

optimization problems. For these models, the FCEV optimization was
conducted, and the results are listed in Table 11.

From the optimization results, it can be seen that a tendency that
the number of armature turns and stack length of the traction motor
tended to decrease and the reduction gear ratio tended to increase
compared with those of the base model. Thus, we can speculate that, if
the combination of the higher reduction gear ratio and the lower torque
of the traction motor is adopted, better fuel economy compared to the
base model could be achieved. This is consistent with the recent trend
in high-speed EV traction motors. In the case of the air compressor
motor, there was a tendency, that the number of armature turns and
stack length of the traction motor tended to increase compared with
those of the base model. And this design direction is advantageous for
the motor to produce high torque and disadvantageous for the motor
to drive at high speed. Moreover, this condition is advantageous to
produce air with low flowrate and high pressure. According to this fact,
we can speculate that the FC stack operated more often at a low airflow
rate and high air pressure.

Subsequently, graphs that can analyze the optimization results were
added as Figure S14 to the Supplementary Materials. The fuel cell
efficiency, traction motor loss, and air compressor motor loss were
compared with the optimization results for the HWFET, FTP75, and
Target driving cycles and the results of the Base Model. In all these
results, it can be seen that the fuel cell is well-controlled to operate
within a range above a certain efficiency, and the overall efficiency is
higher than each optimal model. In addition, it can be seen that the
traction motor loss and air compressor motor loss are overally lower
in the optimal model, indicating that the optimization has performed
well.

5. Conclusion

This study proposed the modeling and optimization methodology
for FCEVs. First, in the FCEV modeling process, the traction system of
the vehicle, the air supply system for the FC stack, and their perfor-
mance relationships were considered. In addition, surrogate modeling
and optimization processes based on the suggested FCEV model were
proposed. In this surrogate modeling process, the ALS algorithm was
developed to efficiently construct the DNN. And the effectiveness of the
ALS algorithm was confirmed. Therefore, we can conclude that the ALS
algorithm can be applied to other meta-modeling processes. Finally,
the fuel economy optimizations were conducted for various driving
conditions. The optimum sizes of two electric motors and reduction
gear ratios were well-designed, and the fuel economy of each driving
condition was improved. In addition, it could be monitored that the FC
voltage variation to the electric motors was well-considered. Therefore,
the usefulness of the DNN-integrated construction methodology was
evaluated while modeling the overall system using detailed component
models. Overall, it can be concluded that this study suggested an effec-
tive modeling methodology and optimization process with reasonable
results.

In summary, this research contributes to the advancement of FCEVs
by providing a comprehensive modeling and optimization methodol-
ogy, addressing performance improvements, and utilizing cutting-edge
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Table 11
FCEV optimization results according to the models.

Model
number

Design result Fuel economy

𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 FTP75 HWFET Test cycle

1 0.85 0.86 9.13 1.76 1.18 3.14 (+6.1%) 2.92 (+5.8%) 2.76 (+3.0%)
2 0.90 0.75 9.13 1.72 1.00 3.10 (+4.7%) 3.00 (+8.7%) 2.79 (+4.1%)
3 0.90 0.82 9.13 1.84 1.32 3.13 (+5.7%) 2.90 (+5.1%) 2.80 (+4.5%)
4 1.00 0.67 8.60 1.28 1.18 3.09 (+4.4%) 2.88 (+4.4%) 2.76 (+3.0%)
techniques such as deep neural networks for design optimization. The
practical significance lies in its potential to enhance the efficiency,
performance, and commercial viability of FCEVs. Moreover, this sug-
gested methodology can be utilized in various design problems of all
the components of FCEVs.
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