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Abstract—The accuracy of motor characteristics prediction ac-
cording to driving cycle can be improved by taking temperature
change of motor into account. From this point of view, this paper
proposes a fast and accurate coupled analysis method. To calculate
motor circuit parameters, electromagnetic finite element analysis
(FEA) is used. The proposed method consists of two stages to
exclude the time consuming FEA from repetitive process. In pre-
process stage, the circuit parameters are stored as look-up tables
(LUTS) considering motor temperature. Further, a technique that
allows reducing the number of analyses is developed to consider
a wide operating temperature range with less time consumption.
In main process stage, the torque and voltage equations are solved
using the circuit parameter LUTs. Among the solved motor char-
acteristics, losses are applied to lumped parameter thermal net-
work (LPTN) as heat sources to figure out thermal characteristics.
Here, techniques including loss separation and thermal parameter
tuning are introduced to improve both accuracy and speed of the
LPTN. Since the computation of the characteristic equations and
LPTN are fast, the iterative analysis at entire time steps of the
driving cycle is facilitated. An example of the proposed method is
presented using worldwide harmonized light vehicle test procedure
(WLTP). Thereafter, the effectiveness of the method is discussed by
comparison with conventional methods. Finally, the experimental
verifications are conducted to validate the electromagnetic FEA
and LPTN used in this study.

Index Terms—Coupled analysis, driving cycle, electric vehicle,
lumped parameter thermal network, traction motor.

I. INTRODUCTION

WING to significant demand for eco-friendly technolo-

gies and high performance, battery electric vehicles
(BEVs) have gained popularity in the automotive industry [1,2].
However, compared to the conventional vehicles equipped with
internal combustion engine, BEVs are inferior in terms of
mileage [3]. Their short range is an intrinsic drawback that orig-
inates from the lower energy density of the battery as compared
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to fossil fuel. Therefore, extending their mileages is a major
concern in BEV development. Although battery technology has
a strong influence on mileage, there are two other approaches
to achieving it. First, many studies have focused on improving
the efficiency of electric powertrain components (such as the
electric motor, inverter, and converter) [4]-[6]. As the mileage
of a BEV depends on its driving cycle, the efficiency of the
motor should be investigated in consideration of motor operating
pattern [7]. Second, many researchers are focusing on energy
management strategies from the perspective of the entire system
[8]-[10]. To establish an effective strategy, the characteristics
of the electric motor, such as current and voltage, should be
accurately predicted in accordance with the driving condition.
In addition, the temperature of the motor needs to be managed to
avoid thermal problems. In other words, both these approaches
require accurate prediction of motor characteristics at each time
step according to the driving cycle.

From this viewpoint, research has been conducted to ana-
lyze motor characteristics considering the vehicle driving cycle,
[7], [11], [12]. In these studies, the time-varying temperature
distribution of a traction motor is not considered, instead, the
temperature of the motor is assumed to be a fixed value. Although
this is a pragmatic approach with reasonable accuracy, there
exists potential for higher accuracies if the temperature change is
considered. In addition, it is difficult to determine an appropriate
fixed value without experimentation. Many studies have consid-
ered electromagnetic and thermal fields. Nonetheless, some of
these studies did not couple the two fields but only examined
them separately [13]-[16]. A few studies coupled the fields
using the trial and error method [17]-[21]. For the error of
the parameter to be converged, many iterations are required for
each time step. Hence, this type of method is not appropriate
for predicting the characteristics at every step according to the
driving cycle. In response to this problem, this paper proposes
a fast and accurate coupled electromagnetic-thermal analysis
method. The method is based on various theoretically simple
but logically effective techniques.

Finite element analysis (FEA) is used for the electromagnetic
field, while the lumped thermal parameter network (LPTN) is
adopted for thermal field analysis [22]-[25]. This combina-
tion is selected to achieve high accuracy and low computa-
tional cost simultaneously. As mentioned previously, conducting
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Fig. 1. Reference motor; configuration (left), flux density distribution at rated
operating point (right).

electromagnetic FEA for every temperature condition ineffi-
ciently requires a significant amount of time. Therefore, a simple
but effective technique is developed based on the behavior of the
circuit parameters of the electric motor according to temperature.
The temperature-dependent behavior of the circuit parameters
is discussed in Section II. Using the proposed technique, the
circuit parameter data obtained via FEA at just six temperature
points was sufficient to accurately predict the characteristics
of the motor from -40 to 160 °C. This temperature range was
decided based on the traction motor specifications provided by
the vehicle manufacturer. Using the pre-analyzed look-up table
(LUT) of the circuit parameters, the motor voltage equation is
solved to obtain the motor characteristics, including the losses.
Subsequently, the losses are applied to the LPTN. This pro-
cedure, which consists of computation alone, is conducted at
each time step according to the driving cycle. Consequently,
the proposed method simultaneously achieves the well-known
high accuracy of electromagnetic FEA and high speed over
a wide temperature range. In addition, because the analysis
results of a previous time step are applied to the next step, this
approach provides highly accurate prediction when analyzing
the time-varying load condition [26]. This process is discussed
in further detail in Section III. For a higher accuracy temperature
prediction, the LPTN for the multi-layered interior permanent
magnet synchronous motor (IPMSM) is constructed. The ther-
mal parameters of the LPTN, which are the most indistinct factor,
are tuned based on experimental data by using the Gaussian
process regression model [27].

An IPMSM for BEV traction was used as the reference
model, as shown in Fig. 1(a). The specifications of the reference
motor are presented in Table I. The model has a multi-layered
arrangement of permanent magnets (PMs) and flux barriers in
the rotor, thus, it undergoes harsh local magnetic saturation,
which results in severe non-linearity. This harsh local magnetic
saturation is demonstrated by the flux density distribution of
the motor at rated operating point (400 Nm at 3820 rpm), as
shown in Fig. 1(b). Therefore, the universality of the proposed
method can be ensured by verifying the proposed method with
the reference model. The reference model, is controlled with
maximum torque per ampere (MTPA) method by an inverter
using space vector pulse width modulation technique. The cur-
rent harmonics caused by inverter switching were ignored in the
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TABLE I
SPECIFICATIONS OF THE REFERENCE MOTOR

Items Unit Value
Number of poles and slots - 8/48
Stator outer diameter mm 249
Rotor inner diameter mm 60
Axial length mm 177
Max. current Apx 480
DC link voltage Ve 400
Max. power kW 160
Max. torque Nm 400
Rated speed rpm 3820
Max. speed rpm 9500

analyses of this study. For the reference model, the character-
istics according to the driving cycles are predicted using the
proposed method. By comparing these results with those ob-
tained via the conventional methods (where motor temperature
is assumed to be a fixed value), the effectiveness of the proposed
method is demonstrated. Finally, to validate the electromagnetic
FEA, and the LPTN used in this study, experimental verifications
were conducted.

II. TEMPERATURE-DEPENDENT BEHAVIOR OF CIRCUIT
PARAMETERS OF IPMSM

When analyzing the electric motor characteristics, there are
two factors that are affected by temperatures. First, the residual
induction of the PM depends on temperature, and the circuit
parameters of the electric motor, such as d- and g-axis induc-
tances, flux linkage, and iron loss are dependent on the residual
induction of the PM [28], [29]. Thus, the motor characteristics
should be analyzed considering the given temperature. These
circuit parameters are obtained with electromagnetic FEA [30].
As this is a considerably time-consuming procedure, a technique
for reducing the computation time is required, instead of con-
ducting FEA over the entire PM temperature range. Meanwhile,
coil resistance, which is also a temperature-dependent factor,
is not considered when performing the FEA. It is considered
when solving the voltage equation, which is significantly faster
than FEA. As an approach to reducing time consumption, this
study aimed to minimize the number of temperature points
at which FEA was conducted. Using the circuit parameters
obtained at a few temperature points, their interpolated values
were used at the other temperatures. The feasibility of using
the interpolated values was demonstrated by investigating the
trends of the parameters according to the temperature of the
PM. The circuit parameters were calculated using FEA under
various conditions, which cover the entire current range of the
reference motor: amplitude of 10, 200, and 400 A,,s; phase of
0, 33, and 66°. The temperature-dependent behaviors are shown
in Fig. 2. Within the operating range, all parameters exhibit
monotonic trends according to the PM temperature. Although
the d-axis inductance shows a relatively uneven trend, it is still
sufficiently monotonic to use the spline-interpolated value. Fig. 3
shows the errors in the interpolated values. These interpolated
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Fig. 2. Trends of circuit parameters according to temperature under various

current conditions.

values at PM temperatures of -20, 60, and 140 °C were obtained
from raw data analyzed at -40, 0, 40, 80, 120, and 160 °C via
FEA. Those three comparison temperatures were determined
considering that large error possibly occur at mid-points of raw
data. Iron loss was calculated by multiplying the frequency
term with the term of flux density in each element obtained via
electromagnetic FEA [31]. Accordingly, it was found that the
error is dependent not on the frequency but the current alone.
Thus, the error map of the iron loss at a base speed of 4000 rpm,
is presented. As expected from the trends in Fig. 2, the error in
the d-axis inductance is the largest, among the other parameters.
Nevertheless, its maximum error is less than 3%, which occurs
at few points, and the overall error is less than 1%. Moreover,
the errors in the other parameters are considerably smaller than
those in the d-axis current. Consequently, it is concluded that
using the interpolated values are reasonable.

III. PROPOSED COUPLED ELECTROMAGNETIC-THERMAL
ANALYSIS

Based on an investigation of the temperature-dependent be-
havior of circuit parameters, a method that enables the fast
analysis of motor characteristics over a wide temperature range
is developed. Including this technique, a process of the proposed
coupled analysis is presented as follows.

A. Coupled Analysis Process

The process is divided into two stages; the pre-process and the
main process, as shown in Fig. 4. Among the analysis methods
used in entire process, FEA is the most time-consuming proce-
dure. Therefore, FEA is performed in the pre-process, instead of
being included in repetitive process. In the main process, motor
characteristics and thermal analysis are iteratively conducted
according to the time steps of the vehicle driving cycle. By
isolating the most time-consuming procedure from the iterative
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Fig. 3. Error maps of the circuit parameters interpolated according to PM

temperature; (a) d-axis inductance (b) g-axis inductance (c) flux linkage (d) iron
loss at base speed.

process, total time cost is reduced. The types of analyses and
their objectives are organized as below.
1) Pre-process
-vehicle simulation: operating pattern of the motor accord-
ing to a driving cycle is obtained
-electromagnetic analysis: circuit parameters of the motor
are calculated and stored as LUTs
2) Main process
-motor voltage and torque equations: characteristics of
motor are obtained using pre-analyzed LUTs
-thermal analysis: LPTN is solved to acquire temperature
change of motor
The pre-process is conducted to store two types of LUTs,
which are used in the main process. To consider the vehi-
cle driving cycle, vehicle simulation is performed. Using the
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Fig. 4. Flow diagram of the proposed analysis process.

driving cycle and the specifications of target vehicle, the LUT
containing the motor operating pattern (i.e., desired torque and
speed according to time) is obtained; The process of the vehicle
simulation with an example is presented in Section IV. As
well as, the LUTs of motor circuit parameters (i.e., d, g-axis
inductances, flux linkage, and iron loss according to current and
frequency) are acquired via FEA. As explained in Section II,
those parameters are calculated at a few temperature points, and
interpolated values are used to analyze motor characteristics.
Considering that temperature of traction motor is changed over
a wide range, the speed of whole analysis can be dramatically
improved by this technique.

The main process contains the motor characteristic analysis
and thermal analysis. Those two analyses are repeated at each
time step of the motor operating pattern. The voltage and torque
equations of IPMSM are used to analyze the motor characteris-
tic, while the LPTN is used for the thermal analysis. Considering
that computation of each equation is quite fast compared to FEA,
it is appropriate to be included in the iterative process. The pro-
cedure of the motor characteristic analysis is explained in detail
as follows. First, the circuit parameter LUTs are interpolated at
a given temperature which is the initial temperature of the PM
in the first time step. Thereafter, the motor characteristics are
predicted using the interpolated circuit parameters. At this point,
MTPA control method is applied for the motor to be operated
at the desired torque and speed with least current draw and heat
generation [32]. This procedure is performed by solving the d,
g-axis voltage equation, and the torque equation of the IPMSM,
as expressed in (1)-(3) [33].

= m L] (e ) [0
Uq Log R; Voq
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Here, the subscripts d and g refer to the d- and g-axis com-
ponents, respectively. The subscripts od and ogq refer to the
magnetization components of each variable. R, and R; refer
to the armature resistance and equivalent iron loss resistance,
respectively. v and i are the voltage and current, respectively; L
is the inductance, wand ¥ are angular velocity and flux linkage,
respectively; and T and P, refer to the torque and number of
pole pairs, respectively.

As a result, the electromagnetic motor characteristics, such
as voltage, current, efficiency, copper loss, and iron loss, are
determined. These parameters are stored according to the time
step. Among the results, the losses are applied to the LPTN,
because they act as heat sources, which are the input parameters
of the LPTN. Using the LPTN for a period of the time step,
the temperature distribution of the motor at the end of the
present step is acquired. Among the results, the temperatures
of the coil and the PM are applied to the analysis of the motor
characteristics at the next time step. This procedure is iterated
according to the entire driving cycle.

B. Techniques for LPTN Operation

The LPTN is based on the Mellor thermal network, which
can efficiently model rotating machines with cylindrical shapes
[34], [35]. Thus, the LPTN is widely used for thermal analyses
because it reduces the time cost, and ensure reasonable accuracy
[36], [37]. The validity of the LPTN has been demonstrated for
various types of electric motors [38]—[41]. The LPTN model for
the multi-layered IPMSM in this study is shown in Fig. 5. The ge-
ometrical elements and their heat transfer network are expressed
considering the motor shape and assembly of each element. The
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effect of the coolant chiller was reflected as consistency in the
coolant inlet temperature.

As mentioned above, the copper loss and iron loss are applied
to the LPTN to predict the motor temperature in the next time
step. These losses are separated to achieve a higher accuracy
of the LPTN. The copper loss is simply separated into the coil
side, and end coil by geometry with respect to their lengths.
As their lengths remain constants regardless of the operating
condition, the loss of each part can simply be obtained using the
total copper loss and the ratio of their lengths. The iron loss is
departmentalized into the stator yoke, tooth, tooth tip, and rotor,
as shown in Fig. 5. Unlike the copper loss, the ratio of the iron
loss in between parts is changed is not constant; this is because its
main influencing factor, i.e., the flux density distribution of the
iron core, depends on the current condition (i.e., the amplitude
and phase angle). However, departmentalizing the iron loss at
every condition requires additional computing time. Thus, the
ratio of iron loss in each part is regarded as a constant, and it is
used to calculate the separated iron loss from the entire iron loss
of the motor, which is obtained via FEA. The validity of using a
constant value for the iron loss ratio needs to be confirmed. The
iron losses in each part under various current conditions were
separated, and their ratios to the total iron loss are shown in
Fig. 6. Overall, the difference according to the current condition
of each part was small. Although the difference is large in the
case of the rotor core, the amount is significantly less than
the other loss [42]; hence, it can be considered as negligible.
Therefore, eachratio is considered to remain constant, regardless
of the current condition, in the proposed analysis method.

In addition to the losses, the thermal parameters have sig-
nificant effect on the accuracy of the LPTN. Basically, the
initial values of these parameters are determined empirically
[43], [44]. Then they are tuned by fitting the analysis results
to the measured data [45]. Depending on the method used for
tuning the parameters, the tendency of the analyzed temperature
varies. In other words, if the data are fitted focusing on the
early phase, the error in the saturated temperature during the
late phase increases, and vice versa. Thus, the approach adopted
should depend on the aim of the fitting. In this study, the LPTN
was used to predict motor temperature under time-varying load
conditions. Therefore, fitting to short-term measured data was
an appropriate solution. In this example, 150 s of measured data
of the end coil and yoke temperature under three conditions

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 70, NO. 5, MAY 2021

TABLE II
SPECIFICATIONS OF THE TARGET VEHICLE

Items Unit Value
Type - Full electric SUV
Curb weight kg 1685
Frontal area m? 2.83
Wheelbase m 2.60
Wheel radius mm 334
Max. speed km/h 167
Gear ratio - 7.981

were used. Among the many thermal parameters including the
heat transfer coefficients, the 12 most uncertain and dominant
ones were selected as variables: thermal conductivity of the coil
insulation, air gap specific heat, five convection heat transfer co-
efficients, four thermal resistance coefficients, and coefficient of
kinematic viscosity. The design of experiments was performed
using the Latin hypercube sampling. Using the Gaussian process
regression, the desirability function expressed in (4) was used
for the multi-objective optimization.

k
maximize D = d}" - dy> - - - d}’*, Zwi =1 4)

where D is the overall desirability, and d is the individual desir-
ability. In the example of this study, there were six temperature
data; at the end coil and stator yoke under three conditions. Each
data was measured for 150 s. From each data, six individual
desirability functions were extracted; five of the mean squared
error (MSE) per each 30 s (i.e., 0-30 s, 30-60 s, etc.), and the
final temperature at 150 s. Thus, the total number of individual
desirability functions, k, is 36; six types of. By setting combina-
tions of the weighting factor, w, for each individual desirability
function, the optimal values for the thermal parameters were
determined. The fitting results are presented in Section V, and
compared with the measured data to validate the LPTN used in
the proposed method.

IV. PREDICTION OF MOTOR CHARACTERISTICS ACCORDING TO
VEHICLE DRIVING CYCLE

A. Motor Operating Pattern From Vehicle Driving Cycle

The first step is obtaining the operating pattern of the motor
from a vehicle driving cycle considering the specifications of the
target vehicle. In this example, a mass-produced fully electric
sports utility vehicle was used and its specifications are presented
in Table II. The vehicle simulation was performed using an
advanced vehicle simulator (ADVISOR) [46]. To obtain the
motor operating pattern, the vehicle simulation was carried out
based on the worldwide harmonized light vehicle test procedure
(WLTP). There are four categories in the WLTP depending
on power-to-mass ratio and the maximum speed of the target
vehicle. Class 3b of the WLTP, which is shown in Fig. 7(a),
corresponds to the target vehicle. As the WLTP was established
for a chassis dynamometer test to determine emissions and fuel
consumption, all operating points of the motor are located within
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low torque and low power regions, as shown in Fig. 7(b). The
points are spread over a wide speed range, but they barely reach
one fourth of the maximum torque. Accordingly, harsh thermal
variations of the motor were not expected. The desired torque
and speed of the motor with respect to time are shown in Fig. 8.
These were stored as the LUT of the motor operating pattern,
and used in the main process at each time step.

B. Characteristics Prediction Results

The temperature trend of the reference motor equipped in
the target vehicle was analyzed using the proposed method, as
shown in Fig. 9. The analysis was repeated over five consecutive
driving cycles. The ambient temperature and the time step were
set as 23 °C and 1 s, respectively. As the reference motor is a
multi-layered IPMSM, the average value of the four segments
is used as the PM temperature. After the second cycle, the
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temperature difference between the stator and the rotor parts
is considerably small, while it is large in the early phase. Thus,
it can be concluded that using the motor temperature as a lumped
parameter is a potential cause of error when the analysis time is
not sufficiently long. During the first driving cycle, the maximum
differences between the highest and lowest temperatures are
24.1 °C for the coil and 38.2 °C for the PM. This is converted
as a 9.5% increase in coil resistance and a 4.2% decrease in the
residual induction of the PM. Low residual induction leads to
a higher input current. A higher current and higher resistance
result in a lower efficiency. The electromagnetic characteristics
considering the temperature change are shown in Fig. 10. As
the WLTP cycle does not aim for severe driving conditions,
the reference motor is mostly operated under high-efficiency
conditions, as shown in Fig. 10(a). In other words, the loss is so
small that the overall efficiency is not affected significantly by
the temperature under the WLTP Class 3b cycle. Furthermore,
the trends of the phase current and line-to-line voltage according
to the time are shown in Fig. 10(b) and Fig. 10(c), respectively.
As these are the loads of the battery, the predicted results can be
used to establish the battery management strategy.

C. Effectiveness of Proposed Method

In conventional methods without coupled analyses, the motor
temperature needs to be assumed as a fixed value. However, it
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is difficult to establish a criterion to determine the appropriate
temperature. In addition, this inevitably causes accumulative
errors. Thus, the empirical value or most severe condition is
applied in general. The inaccuracy caused by neglecting the
temperature change is shown in Fig. 11. The graphs depict
the trends of efficiency differences between the conventional
methods and the proposed method. The values are obtained using
(5), where 7 is the predicted efficiency.

®)

Ndifference = nproposed — Tconventional

The graph with data per 1 s, such as Fig. 10, is significantly
uneven, making it difficult to review. Therefore, the graph with
data averaged over 10 s is used, as shown in Fig. 11. There are
four types of conventional methods. The red, green, and blue
colored lines represent the conditions under which the motor
temperature is assumed to be 30, 50, and 70 °C, respectively. It
can be determined that the prediction accuracy varies depending
on the assumed temperature. In addition, regardless of the PM
temperature assumed, imprecise predictions will be obtained.
The black line with rectangular symbols represents a condition
in which the coil and PM temperatures are as 44.7 and 32.9 °C,
respectively. These values were acquired by averaging the data
in Fig. 9. As mentioned previously, this example presents the
case with the low temperature dependency of efficiency. When
a motor is analyzed over a long-term cycle, accumulative char-
acteristics, such as the mileage of a vehicle, will be critically
affected by temperature, even if it is a less temperature-dominant
case.

V. EXPERIMENTAL VERIFICATION

To confirm the validity of the analysis methods used in the
proposed process, experiment al verifications were conducted.
The reference motor was controlled with MTPA control method
by an inverter using space vector pulse width modulation tech-
nique. As the process includes the electromagnetic field analysis
via FEA, and thermal field analysis via the LPTN, verifications
were performed separately for each field. The experimental setup
is shown in Fig. 12. To measure torque, a torque transducer,
HBM T12 (maximum 1kNm, sensitivity tolerance +0.1%), was
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Coolant chiller

Fig. 12.  Experimental setup for verification.
TABLE III
COMPARISON CONDITIONS; GROUP A
. Conditions
Items Unit
1 2 3 4
Speed rpm 2000 3820 5000 9500
Amp. Aims 478.3 492.5 461.8 398.5
Current
Phase ° 49.4 55.9 66.6 77.6
500- analysis [[011] experiment - error (absolule)’O
7 400 116
Z 300 {zg
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Fig. 13.  Comparison between electromagnetic FEA and experiment results;
Group A.

used. Electrical inputs, such as the line-to-line voltage and line
current were analyzed using Yokogawa WT 3000.

A. Electromagnetic FEA

The load test for the verification of the electromagnetic FEA
was performed at eight points. First, the four points of group
A aimed the peak power of 160 kW, as shown in Table III,
and comparison results of the torque and efficiency are shown
in Fig. 13. The torque error in 2000 and 3820 rpm, which are
constant torque region, were within reasonable level. While, the
error increased as speed increased. It can be estimated that there
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TABLE IV
COMPARISON CONDITIONS; GROUP B

. Conditions
Items Unit
1 2 3 4
Speed rpm 2000 3410 6500 9500
Amp. Arms 319.9 322.5 239.4 259.6
Current
Phase ° 41.2 41.5 60.6 73.9

B analysis ) experiment [l error (ahsululc)’0
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£ 5
m

2 3
Condition

Fig. 14.
Group B.

Comparison between electromagnetic FEA and experiment results;

were error factors related to the frequency. Usually, assumption
of the mechanical loss could be one of the frequency-related
factor. In particular, a relatively larger error in the torque was
noted at the maximum speed of 9500 rpm. Nevertheless, because
the target motor is operated at speed lower than 9000 rpm under
given driving cycle as shown in Fig. 7(b), the error in highest
speed has negligible influence on the analyses conducted this
study. Meanwhile, the efficiency results obtained by the FEA
and experiment well agreed to each other over all speed range.
For the largest efficiency error at 9500 rpm, the aforementioned
factor, mechanical loss could be the reason. Second, the group
B consists of four points with continuous operating conditions
as shown in Table IV. Overall, errors were within allowable
level, as shown in Fig. 14. In conclusion, the validity of the
electromagnetic FEA used in this study was demonstrated.

B. Lumped Parameter Thermal Network

Thermal experiments were conducted under three conditions,
as shown in Table V. As this motor is operated in the low power
region under the target driving cycle, as shown in Fig. 7(b),
the conditions of low and mid-power were selected. The flow
rate of the coolant and the ambient temperature were the same
for all conditions. Compared to condition 1, condition 2 aimed
relatively lower power operation and the condition 3 was in-
cluded for higher power operation. The temperature trends of the
yoke and end coil were measured and compared to the analysis
results of the LPTN, as shown in Fig. 15(a) and (b), respectively.
Given that the error of condition 2 is the smallest and the error
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TABLE V
CONDITIONS OF THERMAL EXPERIMENT

. Conditions
Items Unit
1 2 3
Power kW 80 20 100
Torque Nm 200 50 280
Speed rpm 3820 3820 3410
Coolant flow rate LPM 12
Coolant inlet temperature °C 50 30 50
Ambient temperature °C 23 23 22
Condition 1 : —{—EXP —i— ANA
Condition 2 : =/—EXP —d— ANA
3) Condition 3 : — —EXP —@— ANA
< 75F T T
g —
2 -
£
g 60F
3
]
'é 45
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Fig. 15. Comparison between LPTN and thermal experiment results; (a) yoke
temperature (b) end coil temperature.

of condition 3 is the largest, the prediction through the LPTN
in this study can be regarded to be more accurate at lower
torques. The error of the end coil temperature in the early state
of condition 3 reached a maximum of almost 8 °C. However, this
difference under the highest torque condition has less influence
over the accuracy of prediction over the entire driving cycle.
This is because the motor is mostly operated under lower torque
conditions. In addition, overall, the predicted temperature was
higher than the measured temperature. This can be regarded
as a safety margin that prevents overheating. Consequently, the
LPTN in this study can be regarded as being well composed,
and its thermal parameters can be considered to be w ell tuned
by the optimization process.

VI. CONCLUSION

To predict the characteristics of traction motor accord-
ing to vehicle driving cycles, this paper proposed a coupled
electromagnetic-thermal analysis method that is both accurate
and significantly fast. In the pre-process, the operating pattern
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of motor under given driving cycle were obtained via vehicle
simulation using ADVISOR. Thereafter, electromagnetic FEA
was conducted to acquire LUTs of motor circuit parameter which
depend on the PM temperature. Here, temperature-dependent
behavior of the circuit parameters was investigated to develop a
technique allowing only a few number of FEA to cover a wide
temperature range. In the presented example, a range from -40 to
160 °C was sufficiently covered with just 6 temperature points.
This is one of contributions to reduce the time-cost of entire
process. Its effectiveness is maximized in the case of traction
motor whose operating range is considerably wide. In addition,
by performing the FEA only in the pre-process and using only the
LUTs in the main process, the speed was significantly improved.
In the main process, the circuit parameters interpolated to a
desired temperature were applied to the voltage and torque
equation of PMSM to obtain motor characteristics. Through
applying the losses from results of the characteristic analysis to
the thermal analysis, the LPTN is coupled with electromagnetic
field analysis. To improve the accuracy of the LPTN, losses were
departmentalized considering the motor shape, and the thermal
parameters were optimized using Gaussian process regression.
The parameters were fitted considering that the motor is mostly
operated at low torque region; one fourth of the maximum torque
in the case of this study. Finally, the experimental verifications
were performed for the electromagnetic FEA, and the LPTN.

The proposed coupled analysis method is expected to facili-
tate research on electric powertrains and strategy for the mileage
extension of BEV. First, a motor control scheme for maximizing
efficiency can be established by considering the variation in
motor temperature according to the vehicle driving cycle. This
consideration is also important in motor design. Second, precise
predictions of the energy consumption of the motor would be
useful for energy management strategies of the vehicle, such as
adaptive regenerative braking. Furthermore, predicting the cur-
rent draw of the motor would enable temperature management
of the entire electric powertrain.
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