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The sizing process is necessary to analyze the electromagnetic characteristics according to the major shape parameters during
the early design stage of permanent magnet synchronous motors (PMSMs). However, predicting the performance of PMSMs with
2-D finite element analysis (FEA) has errors due to axial leakage flux. Therefore, the axial leakage flux should be considered in the
sizing process. The most accurate way to consider the axial leakage flux is to perform 3-D FEA, but it has a disadvantage of high
computational cost. In this view, we propose a deep transfer learning-based surrogate modeling method to reduce the computational
cost for calculating 3-D FEA-based motor parameters. The transfer learning is conducted using a large amount of 2-D FEA-based
and small amount of 3-D FEA-based motor parameters. Using the proposed process, it is possible to accurately predict the motor
characteristics according to size-related variables that satisfy the required specifications with small amount of 3-D FEA-based motor
parameters. The proposed method was verified through 3-D FEA and experiments for pancake-type PMSMs, which is highly affected
by axial leakage flux.

Index Terms—Deep neural network (DNN), permanent magnet synchronous motors (PMSMs), shape ratio, split ratio, torque per

rotor volume (TRYV), transfer learning.

I. INTRODUCTION

ERMANENT magnet synchronous machines (PMSMs)

are mainly used as servo motors that require precise
control due to their electromagnetic characteristics such as
high power density, low torque ripple, and cogging torque [1].
Manufacturers of the servo motor develop various models by
changing winding specifications and axial length using the
same stator and rotor core because of cost reduction and
quality control. In addition, the manufacturers develop motors
with high or low output power by changing the outer diameter
of motor based on the previously developed motors. In other
words, a sizing method which controls shape ratio and split
ratio is important in servo motors [2], [3].

The size of PMSMs can be determined using size-related
variables such as torque per rotor volume (TRV), shape ratio,
and split ratio which are related to the magnetic circuit of
the motors [2]. The shape ratio is defined as the ratio of the
axial length to the rotor outer diameter, and the split ratio is
defined as the ratio of the rotor outer diameter to the stator
outer diameter. Therefore, the electromagnetic characteristics
of PMSMs are highly affected by size-related variables.

Since the main flux path of PMSMs is orthogonal to
the rotation axis of the rotor, an electromagnetic analysis is
usually conducted by modeling the magnetic circuit as a 2-D
cross section. However, there exists leakage flux in the axial
direction that does not pass through the airgap. Since leakage
flux causes a decrease in electromagnetic torque, it should be
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considered for accurate estimation of electromagnetic charac-
teristics. Especially, it is important to consider axial leakage
flux in the sizing process because the influence of axial leakage
flux is relatively large for a pancake-type motor with a small
shape ratio [4].

Therefore, we propose a computationally efficient sizing
process of PMSMs using deep transfer learning. The method
can be achieved by using a large amount of 2-D finite element
analysis (FEA) data with low computation cost and a small
amount of 3-D FEA data with high computation cost. In this
article, the analysis was performed using a surface-mounted
permanent magnet type rotor with overhang.

II. S1ZING PROCESS BASED ON DEEP
TRANSFER LEARNING

A. Sizing of PMSMs

The purpose of the sizing process is for predicting elec-
tromagnetic performance according to major geometries such
as stator outer diameter and axial length of PMSMs. The
electromagnetic performance is determined by materials and
geometry variables which determined the electric and mag-
netic circuit parameters, and the geometry variables can be
calculated using the size-related variables such as TRV, shape
ratio, Gshape, and split ratio, agpli, defined as follows:
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where T is the peak torque, Dy, and Dy, are the outer
diameter of the stator and the rotor, respectively, and Ly is the
axial length. Therefore, the size of PMSMs can be determined
by size-related variables as shown in Fig. 1. When the peak
torque is constant, the rotor volume is inversely proportional to
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Fig. 1.

TABLE I
SPECIFICATIONS AND DESIGN RANGE OF PMSM

Item Unit Value
Motor type - SPMSM
Number of poles / slots - 20/ 18
Permanent magnets - N38UH
Stator/rotor core - 35PN230
Peak torque range Nm 5 to 20
TRV range Nm/mm? 55,000 to 120,000
Qshape Tange - 0.30 to 1.20
Qgplit range - 0.55 to 0.65

the TRV. If the volume of the motor is constant, the smaller
the shape ratio, the flatter the shape of the motor and it is
heavily influenced by axial leakage flux than the motor with
large shape ratio. When the split ratio is increased when the
stator outer diameter is constant, the space occupied by the
stator core decreases and it highly causes magnetic saturation
in stator core.

Table 1 shows the specifications and design range of
PMSMs. The type of target PMSM is surface-mounted PMSM,
and it has 20 poles and 18 slots. The design range of peak
torque, TRV, aghape, and agpii are listed in the table. The ratio
of the tooth to the yoke of the stator, pole arc of the permanent
magnets, and airgap length are set to be constant.

In this article, 2-D/3-D FEA is conducted for quantifying
axial leakage flux. Since the magnetic circuit for the axial
direction is considered in 3-D FEA, the axial leakage flux
can be quantified using the difference in motor parameters
calculated by 2-D and 3-D FEAs. Fig. 2(a) and (b) shows the
comparison of 2-D and 3-D FEA-based flux linkage according
to the shape ratio. In the case of small shape ratio, the ratio
of permeance for the axial leakage flux to the permeance for
the main flux is larger than when the shape ratio is large.
Therefore, it is necessary to consider the effect of axial leakage
flux in the sizing process.

B. Deep Transfer Learning

A deep neural network (DNN) is widely used as a surrogate
model for optimization because it shows excellent performance
on various tasks such as regression or classification [5], [6].
Generally, a large amount of data is required to achieve high
performance of DNN. Therefore, applications such as regres-
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Fig. 2. Comparison of 2-D and 3-D FEA-based flux linkage according to

armature current. (a) dshape = 1.5. (b) Gghape = 0.3.

sion of electromagnetic performance using 3-D FEA require
a lot of computing resources to obtain high performance of
DNN.

Transfer learning is a technique that takes domain knowl-
edge of a pre-trained model for the multi dimensional source
dataset, X* € R, and used it to train a new model for
the target dataset, X’ € R"*”, with n denoting the number of
observations and p denoting the number of input features [7].
It can be effectively used when DNN cannot be trained
sufficiently because it is difficult to obtain the label of the
target dataset.

The principle of transfer learning is as follows. Assume
that the source and target datasets have similar distributions
but have bias. The source dataset has a relatively large size
compared with the target dataset because it is relatively easy
to obtain labels compared with the target dataset. The source
DNN has high regression performance because it is trained to
follow the data distribution of the source dataset. Therefore,
to use the domain knowledge of the source model that has
a similar distribution to the target dataset, the layers of the
target DNN except for several top layers are transferred from
the pre-trained layers of the source model.

C. Proposed Sizing Process

Fig. 3 shows a flowchart for the proposed deep transfer
learning-based sizing process. The 2-D FEA-based motor
parameters can be acquired faster than 3-D FEA-based motor
parameters, and each motor parameter has a similar data
distribution. Therefore, DNNs are trained by transfer learn-
ing using 2-D FEA-based dataset as a source data and the
3-D FEA-based dataset as a target data for considering axial
leakage flux. After training DNNs, the motor parameters
according to the desired size-related parameters are predicted
through DNN, and the motor characteristics are calculated by
conducting current vector control under given constraints.

The source and target data were labeled using JMAG,
a commercial FEA software, after design of experiments based
on Latin hypercube sampling. The features and design range
are same as presented in Table I. For each sample, the labeling
process was conducted by calculating the d, g-axis inductance
(Lg, Ly), flux-linkage (y,), and iron loss (W;) according to the
current vector and rotational speed. The d, g-axis inductance
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Fig. 3. Proposed deep transfer learning-based sizing process.

can be computed as

Ly = l//()d'_ Ya Lq _ l/./oq @)
Lod Log
where .40, and yw, are the d, g-axis flux linkage

and no-load flux linkage, respectively, and i,q., is the
d, g-axis magnetization current. The iron loss can be calculated
according to the current vector and rotational speed using
material data [8].

In this article, the DNNs are divided into two types accord-
ing to the attribute of the data. The first DNN is for predicting
Ly, Ly, and y, which are affected by magnetic saturation.
It receives sizing-related parameters and current vector as
input features. The second DNN is for predicting W; which
is affected by frequency and magnetic saturation. Therefore,
it receives the rotational speed along with the aforementioned
input features. In addition, the analysis was performed by
modeling an air dummy corresponding to 50% of the axial
length to consider the axial leakage path in the modeling for
3-D FEA.

D. Learning Performance With Transfer Learning

The structure of DNN was determined through the hyper-
parameter tuning process. The hyperparameters are tunable
parameters that allow us to control the training process of
deep learning model. As the performance of the model is
highly dependent on the combination of hyperparameters, the
process for hyperparameter tuning is necessary. The architec-
ture of DNN was selected as a multi-layer perceptron (MLP).
The perceptron is an algorithm that mimics the principle of
biological neuron, which gives the sum of multiple inputs
multiplied by weights. MLP is a structure in which layers, a set
of perceptrons, are stacked and is generally used for pattern
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TABLE II
DETAILED SETTING OF DNN AND NUMBER OF DATASET

Input features Tpk» TRV, Qshape> Asplit
Output features Lg, Lq, Ya W;
Number of layers 4 4
Number of units 256 256
Learning rate le-5 le-5
Activation function ReLU ReLU
Optimizer Adam Adam
Loss function Mean squared error Mean squared error
Size of mini-batch 16 32
9,800 294 68,600 2,058
Number of dataset (Source, (Target, (Source, (Target,
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Fig. 4. Learning curve of source and target DNNs. (a) Source DNN for

predicting Ly, Ly and w,, (b) for predicting W;, (c) target DNN for predicting
L4, Ly and g, and (d) for predicting W; with or without transfer learning.

recognition of complex dataset. The detailed setting of DNN
and the number of the source and target datasets are listed
in Table II. The number of the source dataset was 33 times
larger than that of the target datasets. The hyperparameters of
DNN were selected as the number of hidden layers and units,
and the learning rate for Adam optimizer. The hyperparameter
tuning was conducted using Bayesian optimization [9] with
source dataset. To avoid overfitting, the source dataset was
split into training, validation, and test datasets at a ratio of
8:1:1. As a result of hyperparameter tuning, the number of
layers, units, and learning rate were selected as 4, 256, and
le-5, respectively.

The target DNNs were trained using transfer learning, and
training was conducted by transferring the weights of three
layers among the four hidden layers. The target dataset was
split into training and validation datasets at a ratio of 5:1,
and the effect of transfer learning was verified by labeling
additional test datasets with a size of 490 for predicting Ly, L,
and y, and 3430 for predicting W;.

The learning curves of the source DNNs and target DNNs
with or without transfer learning are shown in Fig. 4(a)—(d).
As the size of the source dataset was large enough, it can be
seen that the normalized mean squared error (MSE) of source
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Fig. 5. Comparison between ground truth and prediction with or without
transfer learning for test dataset. Results of comparing (a) Ly, (b) Ly, (¢) W,
and (d) W;.

DNNs was converged to low values. As the domain knowledge
of the source dataset was used when training target DNN with
transfer learning, it can be seen that both the normalized MSEs
of the training and validation datasets were converged to low
values. However, in the case of DNN trained from scratch
without transfer learning, it can be seen that the DNN was
overfitted because the size of the target dataset was small.

Fig. 5(a)—(d) show the comparison between prediction and
ground truth for the test dataset. As a result of using transfer
learning, it can be seen that the regression performance on
the test dataset was highly well-evaluated, and as a result of
training from scratch without using transfer learning, it can be
seen that the regression performance was degraded because
DNN was overfitted to the training dataset. In the case of Ly
and L, the results with transfer learning showed higher per-
formance by about 1.5%p compared with the results without
transfer learning. In the case of y, and W;, the results with
transfer learning show about 3.0%p higher performance than
the results without transfer learning. Therefore, high regression
performance can be achieved using transfer learning with a few
3-D FEA data.

III. S1ZING RESULTS AND EXPERIMENTAL VERIFICATION

In order to maximize the effect of axial leakage flux, the
type of target motor was set as a pancake type with small
Gshape- The peak torque, TRV, tghape, and agpiie of the target
motor were set to 7.5 Nm, 116568.6 Nm/mm?>, 0.31, and 0.64,
respectively. Fig. 6(a)-(d) show the comparisons of Ly, L,
flux linkage, and iron loss between 2-D, 3-D FEA-based motor
parameters and predicted results of the presented model. It can
be seen that the motor parameters predicted using target DNNs
according to current vector and rotational speed fit to the 3-D
FEA results well except for L,. If the number of training data
increases, regression performance will be further improved and
the error of L, will also be reduced.

A specimen was fabricated and tested with a test rig as
shown in Fig. 7. To consider the effect of axial leakage
flux, the line current according to load torque was mea-

Fig. 6. Comparison of motor parameters between 2-D, 3-D FEA, and results
using the proposed method. (a) d-axis inductance, (b) g-axis inductance,
(c) flux-linkage, and (d) iron loss.
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Fig. 7. Fabricated target motor and test rig.
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2-D, 3-D FEA, results using the proposed method and experimental results.
(a) Trends of armature current and (b) absolute error according to load torque.

sured. The test was conducted at 100 rpm to exclude the
effect of mechanical loss, and permanent magnet eddy current
loss was neglected in characteristic calculation because it
was calculated based on the predicted results using trained
DNNs. Fig. 8(a) shows a trend of armature current according
to load torque, and Fig. 8(b) shows an error between the
simulation and experiment results. It can be seen that the
simulated results by 3-D FEA had the lowest error and
the predicted results using the proposed method also have
higher accuracy than 2-D FEA.

IV. CONCLUSION

This article proposes a computationally efficient sizing
process for PMSMs considering axial leakage flux using deep
transfer learning. For the sizing process, the peak torque, TRV,
shape ratio, and split ratio were considered, and 3-D FEA was
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performed to consider the axial leakage flux. 3-D FEA can
accurately calculate the leakage effect in the axial direction
compared with 2-D FEA, but it is inefficient because of its
high computational cost. Therefore, we proposed a surrogate
modeling method that extremely lowers the computational
cost of 3-D FEA using deep transfer learning using domain
knowledge of 2-D FEA results. As a result, it was possible to
predict electromagnetic characteristics of pancake-type motor
which is highly affected by axial leakage flux with high
accuracy by conducting small amount of 3-D FEA.
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