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Abstract - This paper presents a method to analyze
radial force densities acting on each stator tooth of an
induction motor with skewed slots. Two—dimensional
finite element method is used for electromagnetic field
analysis of an induction motor, and skew effects are
considered by coupling several disks cut by planes
perpendicular to the shaft. Radial force densities 'as a
source of vibration are calculated along the surface
elements of each stator tooth and its time harmonics
are examined by discrete Fourier decomposition.

I. INTRODUCTION

‘In an electric motor, mechanical vibrations of
electromagnetic  origin  are generated by the
fluctuations of magnetic forces applied on the stator.
Particularly, these phenomena are serious when the
forcing frequencies match one or more of the
structural frequencies in the machine. Thus, accurate
determinations of the exciting radial magnetic forces
are essential in vibration analysis.

One technical approach solving magnetic field is
sinusoidal method, in which magnetic vector potential
A, and current density J varies sinusoidally with time,
But, this is not adequate to represent space and time
harmonics of swrface forces acting on stator teeth,
The method that has been developed in this paper is
a step-by-step method, with two different reference
frames, one fixed with stator, the other one moving
with the rotor.

In order to have a good evaluation of the
distributions of magnetic forces along the stator,
forces exerted on teeth and on conductors are
evaluated. However, the relative magnitudes of the
force densities acting on the teeth are much greater
compared with conductors [1]. Thus, only radial force
densities are calculated along the surface elements of
the teeth by the Maxwell’'s stress tensor method. The
time dependence of the field and the motion of the
rotor are modelled by the backward-difference scheme.

II. FIELD ANALYSIS

A three-dimensional formulation should be used to
calculate the magnetic field of an induction motor. But,
their practical applications  are still restricted to
relatively simple geometries. So, two-dimensional
model is used in this paper and the three dimensional
effects such as the skew of rotor slots, and
end-region fields are taken into account within the
two~-dimensional model.

Simulations are carried out for a 150 kW squirrel
cage induction motor with 6 poles, 72 stator slots, 60
rotor bars, as shown in Fig. 1.

A Field Equation

The magnetic vector potential
Maxwell’s equation is written as

form~ of the

vx(y va)——]w+a—aaAt¥ +av¢=0, (0

where A, v, o are the magnetic vector potential,
the reluctivity of the material and the electrical

conductivity, respectively, and J.. is the current

density provided by an external power supply. ¢
represents the electric scalar potential.
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Fig. 1. Analysis. Model
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The. gradient of scalar potential ¢ can be
expressed with the aid of the potential difference
induced between the ends of a rotor bar.

B. Circuit Equations

To analyze a voltage fed induction motor, field
equations must be coupled with circuit equations.
Thus, the impedance of the end-rings and the
end-windings must be introduced. These quantities
are computed analytically and will supplement the
two-dimensional finite element analysis with skewing
model.

1) Stator equation : If we le¢ R and L,y the

analytically computed resistance of stator winding per
phase and inductance of the end-windings, respectively,
the following equation is obtained on the stator
winding,

V,=RI,+L, ‘fl% +-4¢.

) (2)
where ¢ is the linkage flux in the winding and will
be expressed by magnetic vector potential A.

2) Rotor equation : The rotor cage bars are solid
conductors connected together by end rings, and can
be described by a polyphase circuit.

The details of the construction of the circuit
equations are presented in [2],[3].

C. Time-Dependence

A time~dependent field is solved by discretizing the
time at short time intervals. In the backward
difference scheme, the time derivatives of the vector
potential and the current are approximated to

A _ Awna— A
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D. Skew-Modelling

An approach to represent a skewed rotor in two
dimensions is to use a set of unskewed models, cut
by planes perpendicular to the shaft as shown in Fig.2.
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Fig. 2. Skew model

Indeed, a real skewed machine is fabricated from a
stack of straighted-punched laminations, each of which
may be regarded as a single unskewed slice.

The magnetic field of each slice is coupled together
in one matrix form satisfying the continuity of stator
and rotor bar currents.

E. Motion of Rotor

The rotor must be rotated by the angle
corresponding to mechanical angle associated with
motion equation at each time step. However, in this
paper, the motor operates at a constant speed and the
rotor movement at each time step is modelled by
sliding surface technique, in which potentials on the
two sides of sliding surface are equal.
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Il ANALYSIS OF RADIAL FORCE DENSITIES
A. Computation Method

The surface force density derived from the

Maxwell tensor formulation has- the following
expression for the ferromagnetic material [4].
F=[H (B, nyp)—(BH/2)n] )
—[Hy(By+ nyp)— (B Hy/2)my] |

where H; is the magnetic field intensity and B; is
the flux density of surface element adjacent to the
boundary. 2,y is unit normal vector to the surface

and goes to  airgap region from the higher
permeability region as shown in Fig4.
Slot J%(itﬁ,) Slot
Radial Force
_‘\_”____J
N Air gap (B, H:)

Bar /'.::T

Fig. 4. Surface force density calculation

B. Frequency Analysis

A discrete Fourier decomposition of the radial force
densities in each surface element of every stator
teeth has the following form :

Fwt) = 0 + % (a,cos nwt+b,cos nwl), &y

N
__ZN ﬁﬂwm a :72—\[ > Fwt)cosnwt; |

i=1
=‘12\7 gﬁ(wti)sinnwti, (n=1,2,- - -, Y-,

In (6), N is 64, the double number of time step
used for one period of the surface force function
corresponding to 180 electrical degrees. The
fundamental frequency of the magnetic force is

equal to twice the current frequency, /. (60 Hz).

C Simulation Results

Fig. 5 shows the time evolution of :the radial force
densities applied on a- tooth of each slice of the stator. It
can be seen that the radial force density at each slice: in
the skewed model is shifted corresponding to skew angle,
The force densities calculated during the computation
represent the instantaneous values at each point in time,
and appear as non-sinusoidal - variation - periodic in half
period of current frequency f-. The rnodulatlons due to

the presence of slots ‘are obvious.
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Fig. 5 Radial force densities on a tooth as a function of time



In Fig. 6, surface force time dependent functions are
decomposed by discrete Fourier decomposition in a stator
tooth surface elements at each slice. The frequency
spectra of the radial force densities acting on the same
tooth in the shaft direction are different because of the
skewed rotor bars effect. Table 1. shows the quantities of
these radial force harmonics at each slice tooth surface.
The force harmonics was investigated up to 30th, ie
1,800 [Hz] since the mechanical resonance frequency of
stator are usually below about 2,000{Hz].
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Fig. 6. Discrete Fourier decomposition of the radial forces densities
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TABLE 1 Characteristics of radial force harmonics

Harmonics | Frequencies|  Radial force densities N/em?]
order [Hz] 1st shice | 2nd slice| 3rd slice

2 120 11601 . 8.297 6.071

4 240 2.555 0.9 0.587

6 360 1348 1.348 1548

8 480 0.985 1073 1126

10 600 0.788 0.570 0.148
12 720 0501 0.191 0.207
14 840 0.067 0.427 0.406
16 960 1.469 0434 0.369
18 1080 0243 0572 0567
2 1200 1522 15% | 0344
22 1320 2.897 3682 2316
24 1440 2118 1.725 1.646
26 1560 1.786 1.288 0.865
28 1680 2797 0.74 0.637
30 1800 1979 0286 0.255

V. CONCLUSION

In this paper, the radial force densities acting on
teeth of an induction motor with skewed slots, as a
source of stator mechanical vibration, are calculated
and its harmonics are analyzed by discrete Fourier
decomposition. As a result, if the mechanical
resonance frequencies of the stator are known at the
stage of motor design, we can get rid of the radial
force harmonics which match one of the resonance
frequencies by adjusting skew angle of rotor bar.
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