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3D Transient Analysis of Linear Induction Motor Using the New
Equivalent Magnetic Circuit Network Method

Jin Hur*, Gyu-Hong Kang** and Jung-Pyo Hong**

Abstract - This paper presents a new time-stepping 3-D analysis method coupled with an external
circuit with motion equation for dynamic transient analysis of induction machines. In this method, the
magneto-motive force (MMF) generated by induced current is modeled as a passive source in the
magnetic equivalent network. So, by using only scalar potential at each node, the method is able to
analyze induction machines with faster computation time and less memory requirement than conven-
tional numerical methods. Also, this method is capable of modeling the movement of the mover with-
out the need for re-meshing and analyzing the time harmonics for dynamic characteristics. From com-
parisons between the results of the analysis and the experiments, it is verified that the proposed method
is capable of estimating the torque, harmonic field, etc. as a function of time with superior accuracy.
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1. Introduction

Predicting the electromagnetic phenomena is essential
for motor performance improvement due to the design
trends that have been established in recent years. It is also
necessary to analyze the motion equation of the armature
accurately in order to design their response time. The char-
acteristics of linear induction motors are greatly influenced
by the electromagnetic fields at longitudinal and transverse
ends of the motors and the end leakage flux at the overhang
regions. It is difficult to analyze the dynamic transient
characteristics because they require immense computation
time and a large memory capacity [1, 5]. Specially, when
the motor driven by a PWM inverter is analyzed using the
time-stepping 3D method, the number of time steps re-
quired to obtain precise results is formidable. Furthermore,
the iterative calculations are carried out at each time step to
consider the magnetic saturation [2, 6].

In this paper, a new 3D time-stepping method to obtain
dynamic transient characteristics by coupling of the exter-
nal circuit and motion equation is proposed. Its method
combines a magnetic equivalent circuit with a numerical
method such as FEM. In this method, additional variables
like electric potentials are unnecessary because the mag-
neto-motive forces (MMFs) by induced current combine a

passive source into the equivalent magnetic circuit network.
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It also easily takes into account the rotor movement by
changing the MMFs and the reluctances in the network
without the need for re-meshing. Therefore, the proposed
method is capable of modeling the motor 3-dimensionally
and analyzing the 3D dynamic characteristic of the motor
with less computational time than other 3D analysis tech-
niques like 3D FEM.

The new method is applied to the dynamic transient
analysis of the liner induction motor system shown in Fig.
1 to clarify the usefulness of the proposed technique. The
results of the developed method are compared with the
measurements and also with the 2D analysis result.

2. Characteristic Analysis
2.1 Analysis method

In this paper, the analysis model is divided into hexahe-
dral elements and then an equivalent magnetic circuit net-
work is constructed by connecting the central nodes of the
elements to adjacent elements through permeance. After
constructing the network using the input current, the ge-
ometry and material characteristics of the motor and the
influences generated by induced currents are represented as
passive components in MMFs and permeance of the con-
ventional network. Therefore, by using only scalar poten-
tial at each node, it is possible to model and analyze induc-
tion motors in 3-dimensions. Figure 2 shows the mesh
shape of LIM. The MMF generated by the induced current
can be obtained from Faraday’s law as follows:
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Fig. 1 Proloype of the LIM servo system

The induced current in the conducting region in
response to the time varying magnetic flux linked by the
region has x- and z-components. From Fig. 2, the differen-
tial terms of the above equation can be expressed as the

following using the first differential term of Taylor’s series.
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From (1) and (2), the induced current density may be
expressed [8, 9].
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Fig. 2 Flow of magnetic flux at a node and configuration of
magnetic circuit network
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The conventional reluctance R, between two nodes is
a series connection of two element reluctances, R, ' and

R,,” determined by their shape and materials. So, R, is
given by: :
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Also, the conventional MMFs by the stator current, F, s(x),
is calculated by Ampere’s law using a current sheet
Js( x)of three-phase, double-layer distributed winding in
the stator such that [5, 6].
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where nis the slot number, I(n,)is the current of each

phase in the slot , kis m/t and W, ¢, T and N are
the slot width, slot pitch, pole pitch and turns in one slot,
respectively.

From the constructed conventional equivalent circuit
network, the additional reluctance and MMFs are due to
the induced current added on the conventional network.
The reluctance at the time ¢ can be obtained from (3) as fol-
lows:
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So, we can achieve new reluctance considering the effect
of induced current. Also, the MMFs due to the induced
current at the time 7 can be expressed as:
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Therefore, the MMFs of the elements in source regions at
the time ¢ is:

Fo(x,p +F;ND‘ (0. j.k)
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where m is the number of elements of the teeth and slot
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regions in the y direction.
The magnetic flux between two nodes (i,j,k) and (i,j-1,k)
are calculated such that:

Oin = % ( U= Ul + Ff.\-“_,,,)
n’[l.l.*l
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Fig. 3 Modeling of LIM in y-z plane,
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where, Ui x)is unknown magnetic scalar potential at
node (ij.k). The permeance is calculated accurately for
each divided element.

From (9) and (10), we divided the analysis model into
elements and we built the equivalent magnetic circuit net-
work shown in Fig. 1. The MMF due to the end coil is con-
sidered as shown in Fig. 3. We can then solve the network
using the magnetic continuous condition, which states the
sum of inflow and outflow of magnetic flux at node (i, j, k)
as:

> &gk =0 (11)

ij.k

Now the equation of the magnetic flux for each direction
can be written as:

O'R'~y =F'w (12)

where, Ry=(R, +Ry,), F'v =(F; +F,, ), R, and F,
are the reluctance and MMF due to input current in
conventional MEC and F),,, is the induced MMF due to
eddy current. Also, we can apply the time diffence method

(TDM) to (11). The system matrix equation can be ob-
tained as follows:

m

[p]..{u},.. = {F},., (13)

primary

reaction plate, Al

Fig. 4 Mesh shape for EMCN

where n is total number of nodes, [P] is the permeance

coefficient matrix which is symmetric and has a good
sparsity and bandwidth, {U}"xl is the matrix of unknown

magnetic scalar potential (MSP) at a node, and {F} _ is the
forcing matrix including MMF due to the induced current.

2.2 Motion equation and External circuit equation

The motion of the primary is governed by the motion
equation,

F:mrr.-..-; a Ffmrd = M (dV/df )+ k_r' v ( 14)

where F,

Thrust

of mover, v is the mover speed and & ; is the coefficient

is the electromagnetic thrust, M is the mass

of viscous friction. When the primary moves from x
tox—x,, MMFs distribution of the primary, Fy(x) and
the relative permeability [(x) of the primary changes at
each node for Fy(x—x, ), x—x,) according to the

moving distance of the mover. As such, the motion of the
primary is easily modeled without the need for re-meshing.
The external electric circuit equation for one phase of the
motor is as follows:

D
Vv, :Ir.R+N,-[L] (15)
dt

where V;is the applied input voltage of i-th phase, I, is
the primary current, N, is the number of turns of primary

winding and @, is the primary linked flux.

3. Results and Discussion

The proposed method has been succesfully applied to
the study of a LIM. This motor is fed by a three phase
voltage source. The total number of nodes and the element
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number used for 3D EMCN analysis are 84,940. Results
with the proposed method are presented in Figures 5 to 8.
Fig. 5(a) shows B,, B, and B, versus x, which are calculated
at x-y plane in the center of the air-gap. Fig 5(b) shows B,,
B, and B versus z, which are also calculated at y-z plane in
the center of the air-gap.

Compared with the results of 2D analysis assuming that
it has a constant value in the z direction, the analysis results
indicate that B, is increasing because of the MMF by end
coil and B, is very large at the end of the core due to lateral
leakage flux. The eddy current paths between 2-D and 3-D
models are different and the MMFs produced by the end
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Fig. 5 Distribution of magnetic flux density
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Fig. 6 Normal force versus time
(Comparison of 3-D EMCNM and 2-D FEM)

coil are not considered in 2-D analysis. That is, when eddy
currents are included in 2-D analysis, error can occur if the
leakage fluxes from both sides of the core are not correctly
modeled using 2-D analysis. Comparing the proposed
method with 2-D FEM respect to the normal force versus
time at the locked primary as shown in Fig. 6, the 2-D
analysis overestimates the normal force.

It is assumed that the eddy current is constant over the
analysis region and the MMF due to the end ring not being
included in the 2-D model. So, in order to compensate for
the modeling error, the voltage drop of the end ring is only
considered by modifiying the conductivity ¢ in the
conventional 2-D formulation [7]. Fig. 7 shows the
comparison results of 3-D EMCN and 2-D FEM with
compensated conductivity for the thrust according to the
time. The currents at standstill are shown in Fig. 8.

References [1-5] reported a similar analysis using 3-D
FEM, which required a long computational time of more
than two hours for just one time step. Also, for transient
simulation, 3-D FEM requires re-meshing at each time step.
Therefore, a large computation time is required for time-
stepping 3-D transient analysis. However, the proposed
method in this paper requires only 10 minutes simulation
time for each time step, because it is capable of analyzing

2D FEM without compensated conductivity

/% 2DFEM with compensated conductivity

-

el e ey ST B T AL

000 001 002 003 004 005 006 007 008 009 0.
Time [sec]

Fig. 7 Thrust versus time

=

Current [A]
=

1
5N

I — T T o T L LR e A8

T, |

0.00 0.02 0.04 0.06 0.08 0.10 0.1:
Time [sec]

Fig. 8 Currents at standstill



126 3D Transient Analysis of Linear Induction Motor Using the New Equivalent Magnetic Circuit Network Method

r\ 2D FEM

200 x|
| J m 3D EMCN

-50 el L L 1 1 1 1 I 1 ——
0.00 0.01 002 003 004 005 006 007 0.08 0.09
Time [sec]

Fig. 9 Comparison for Thrust

the motor without introducing the above mentioned addi-
tional variable. Also, this method does not require re-
meshing, because the movement is easily modeled by
changing the function of the MMF and the reluctance
without re-meshing. Therefore, this method is an effective
method to analyze transient behavior of an induction motor
in 3-D. Fig. 8 shows transient thrust comparing the
proposed method with 2-D FEM.

5. Conclusion

In this paper, a new time stepping 3-D numerical method
has been proposed for the purpose of analyzing the dy-
namic transient characteristics of induction motors. This
method can analyze induction motor with low computation
time for 3-D analysis because it doesn’t need additional
variables like current vector potential for analyzing the in-
duction current. Accuracy of the method has been success-
fully tested on a linear induction motor by comparing it
with FEM. It must be noted that the low computational
time required by the new 3-D simulation of the induction
machine has a great advantage over 3-D FEM.
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