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,Abstract- This paper presents the robust shape optimization of 
electromechanical devices considering the uncertainties of design 
variables based on numerical optimization technique and finite 
element method (FEM). I n  the formulation of robust 
optimization, the multiobjective function is composed of the 
mean and the standard deviation o f  original objective function, 
while the constraints are supplemented by adding penalty term 
to original constraints. The sequential quadratic programming 
(SQP) i s  applied to solve the robust optimization problem. The 
results of robust shape optimization considering manufacturing 
errors are compared with those of conventional shape 
optimization. 

lndex terms-robust shape optimization, FEM, multiobjective 
function, mean, standard deviation, manufacturing errors 

I .  INTRODUCTION 

Many scientists and researchers have developed the 
characteristics of electromechanical devices using numerical 
optimization techniques and analysis tools [ I]-[3]. 

Since the deterministic approaches of optimization neglect 
the effects on variation of design variable such as tolerance, 
the systems using the conventional deterministic approaches 
of optimization can not display theirs expected ability or may 
have the drastic change of performances [4]-[9]. 

The design of electromechanical devices requires 
allowance for dimensional and manufacturing tolerances on 
every part; for example, tolerances occur on stator and rotor 
punchings, frame dimensions, bearing clearances, magnetic 
and electric material properties, etc.. The larger the tolerances 
in the manufacturing process, the lower the cost of 
manufacturing the machine. Dimensional tolerances, however, 
can, and often do, impact machine performance, for example, 
as in operating efficiency and reliability. Therefore, the 
robust optimal design method is to be inevitably needed 
considering the uncertainty of design variable in 
electromechanical devices. 

Under the assumption that the design var iables  are  
distributed in probability with the tolerance band, the robust 
optimal design is the technique, which makes the response of 
system due to the variation of design variables be insensitive 
so as to approach to the original objective function. The 
robust optimal design have been actively studied according to 
the formulat ion method o f  the  object ive funct ion and 
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constraint function and the usefulness has been certified in 
the many application areas [4]-[9]. 

In this paper, we introduce the robust shape optimization 
of electromechanical devices with numerical optimization 
technique and FEM. In the formulation of robust optimization, 
the multiobjective function is composed of the mean and 
standard deviation of original objective function, while the 
constraints are supplemented by adding penalty term to 
original constraints [4]. SQP is applied to calculate the design 
variables [IO]-[ 1 I]. The results of robust shape optimization, 
which consider manufacturing errors, are studied and 
compared with those of conventional shape optimization. 

11. PROCEDURE OF ROBUST OPTIMIZATION 

General formulation of conventional optimization is 
expressed as eq. (1). 

Minimize f CX) 

Subject to g , ( x )  CO,  j = 1, ..., m (1) 
X I ,  < x 2 x,, 

where, f ( x )  is the objective function, g ,  ( x )  is the 
constraint function, m is the total number of constraints, 
and x the vector of design variable and x L  , xl,  are the lower 
bound and upper bound on design variable respectively. 
Optimal solution derived from eq. (1) is obtained by only the 
nominal value without considering the uncertainty of design 
variable. Actually, since the design parameter has the 
tolerance band, the variation of objective function of eq. (1) 
occurs. The large variation of objective function causes the 
performance of system to be unstable. Also, the design based 
on the optimal solution from eq. (1) may lead to the violation 
of constraint, it can be useless. 

Tolerance (Ax,)  , Tolerance (Ax,)  

c 

k, -3 %, k, &,+3Ox, 
Fig. I Mean ( p ~I ), standard deviation ( ox, ) and tolerance band ( A x, ) 

of the I -  th design variable 
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Therefore, it is desired to calculate the robust optimal 
solution, which can decrease the fluctuation of objective 
function due to the variation of design variable and always 
satisfy the initial constraints. The variation and distribution of 
the I-th design variable (x, ) is shown in Fig. 1 [ 5 ] .  In 
general, the i -  th design variable (x,) is regarded as 

30,) = Ax, and it is assumed to be distributed between 

P I, -3o,, and P I, + 3 c , ,  [41-[51. 

A .  Robustness of Objective Function 

Figure 2 describes the robustness of objective function. 
Point A is the local minimum solution without considering 
robustness and point B is the optimal solution considering 
robustness. The performance value of point A is smaller than 
point B, but the one is very sensitive to the variation of design 
variable. On the other hand, in case of point B, the 
performance value is robust, but it is larger one than point A. 
That is, with the respect of the robust design, point B can be 
regarded as superior solution to point A. In order to obtain the 
robust optimal solution, the original objective function can be 
replaced to the following described multiobjective function 
(w) [41. 

Minimize O(x) =“.,U, + ( l -a) .at  
0 1  a I1 

x,. 1 x f A x  1 x,, (2) 
where, a is the weighting factor determined by the designer 
and p l  , ol are the mean and standard deviation of objective 
function respectively. 

As shown in Fig. 2,  The multiobjective function of eq. (2)  
tends to have the value of point A when weighting factor 
equals to 1, while the multiobjective function of eq. (2) tends 
to have the value of point B when weighting factor equals to 
zero. The precision value of the mean and standard deviation 
of eq. (2) can be obtained by using probability density 
function. However, probability density function is usually 
unknown or difficult to acquire in electromagnetic field. Even 
if such information is known, use of probability density 
function would be computationally time consuming involving 
finite element analysis and iterative analytical methods. In 
these problems, first order Taylor expansion is used [9]. The 
mean and standard deviation of objective function can be 
approximated as follows using Taylor expansion and 
neglecting the above second order terms [9]. 
/‘/ = f ( x >  (3) 

Fig. 2. Robustness ofthe objective function. 

B. Robustness of Constraint Function 

If the design variable is distributed, the original constraint 
function is violated. Figure 3 depicts the robustness of 
objective function. In Fig. 3, the region, which is represented 
by dotted line and oblique line, is feasible region without 
considering the variation of constraint function and the 
oblique lined region is infeasible region, which is caused by 
the variation of design variables. If point A is the optimal 
solution considering the robustness of objective function, 
point B is the optimal solution under the changed feasible 
region. In order to consider the variation of constraint, the 
constraint function can be replaced by eq. (5) [4]. 

where, dgl /ax, is the gradient of the j -  th constraint 
function to the i- th design variable. 

In eq. (9, the newly constructed constraint function 
(g,,,,,,, ) is adopted to get the conservative value adding the 

original constraint function ( g /  ) to the gradient of the one. 
The penalty term, the second term of right hand in eq. (5), 
indicates the absolute value regardless of the sign of the 
gradient . 

where, n is the total number of design variables, X is the 
mean vector of design variable and ovi* is the pre-known 
value of design variable instead of probability density 
function. Fig. 3. Robustness ofthe constraint function. 
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111. ROBUST SHAPE OPTIMIZATION PROBLEM 

SQP technique is applied to find the optimal design 
parameter [lo]-[l I ] .  The SQP converts original objective 
function and constraint function into linearized subproblem 
by Taylor expansion. It uses descent condition as a 
convergence algorithm. 

The geometry to be optimized is the pole face of a motor, 
as shown in Fig. 4, for which the magnetostatic field analysis 
is carried out in 2-D using FEM. In the model, the stator and 
the pole face are treated as magnetic material with 
permeabilityp = 3000 (Vs/Am). The winding carries a 
current of density J = 30000 (Aim'). The nonlinearity of 
magnetic material is not taken into account when solving the 
governing equations of the model. 

The goal of the optimization is set as to achieve a 
sinusoidal magnetic flux density distribution along the line A- 
B of Fig. 4 positioned 0.12 (mm) below the stator. At point A, 
magnetic flux density is maximum and it is expected to 
follow a cosine function to become zero at point B which 
represents a 90" distance from point A. 

The design variables A, through A, determine the shape of 
the pole face. These are the y-coordinates of 9 points placed 
on the pole face in the x direction with fixed x-coordinates. 
They are allowed to move in the y direction between y = 

26(mm) and y = 29.8(mm). 
Every time a new mesh is generated, interpolation using a 

piecewise-cubic splines is applied to each node between 
design variables. 

The objective function that is used by the search process as 
the decision criteria is obtained from the desired field 
values(cosine function) and the calculated field values at n 
points along line A-B using the function 

where, B is the airgap magnetic flux density. 

The constraint is selected as follows; 

2 A, 2 A i  2 A , 2  A,2 A, 2 A9). 
1 )  The manufacture of shape must be easy (A, 2 A,2A, 

2) The maximum airgap flux density is less than that of the 
model in Fig. 4 in order to maintain the initial gap (g, (x) = 

B,,,,, 5 0.1 13 (T) ). 

IV. RESULTS 

The obtained results for the optimization problem descried 
above are represented in Table 1 and Figs. 5, 6 ,  7, and 8. 
When the optimization is carried out, the converged criteria is 
determined to 0.1 ("?) and the search is converged about 19 
iterations. The time cost of robust design is estimated about 
15 times than that of the conventional optimization design. 

40.3 - 
Stator 

30.3 - 
A B 

29.7 - 

24.1 - 
20-1 I I 

I 
10 25 2830 mm I 0 

Fig. 4. Geometry of the pole to be optimized and design variables. 

The reason is that, in case of the robust design, the 
objective function and the constraint function are needed to 
calculate the gradients, which are expressed in eqs. (4) and (5). 

Figures 5 and 6 show the optimized pole shape by 
conventional optimization technique and robust optimization 
technique along with the geometry of the pole piece and the 
field lines. The coordinates are summarized in Table I. 

Figure 7 depicts the values of mean and standard deviation 
according to weighting factor. From Fig. 7, it is noted that the 
values of mean and standard deviation is somewhat linearized 
when the weighting factor is between 0.5 and 1 .  But, in case 
of the weighting factor is below 0.5, it is certified that the 
values are not linearized. 

Finally, in Fig. 8, the airgap flux density along the line A- 
B according to tolerance is shown, The graph indicates that 
the larger tolerance band is, the larger the mean and standard 
deviation of the objective function are. Also, it is noted that it 
is possible t a  select the proper tolerance according to the 
condition of requiring precision so as to reduce the cost of 
manufacturing the motor. 

TABLE I 
Coordinates of design variables according to the conventional optimization 

technique and the robust optimization technique 

Design Conventional Robust 
Variable Optimization Technique Optimization Technique 

Number (mm) (mm) 
A, (0, 29.6152) ( 0 3  29.6188) 
A, (4.6777. 29.590 ) (4.6777. 29.5718) 
A, (8.75. 29.5368) (8.75, 29.5088) 

A4 (1 2.8333, 29.421 2) (12.8333. 29.4483) 
Aj (1 6.3333, 29.2621) (16.3333. 29.2477) 
A ,  (19.8333,28.9585) (19.8333. 28.9595) 
A7 (22.75, 28.4492) (22.75. 28.6061) 
AX (25.0833, 27.4567) (25.0833. 27.3151) 
A, (28, 26.4637) (28, 26.1763) 
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Fig 5. Optimized pole shape by conventional optimization technique and 
the field lines. 
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Fig. 6. Optimized pole shape by robust optimization technique and the field 
lines when the weighting factor ( a ) is 0.8 and the tolerance ( Ax ) is 
20 ( pnt  ). 

V. CONCLUSION 

In this paper, a robust shape optimization technique of 
electromechanical devices is presented. 

Mean A Standard Deviation 

Fig. 7. Values of mean and standard deviation according to weighting factor. 
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Fig. 8. Airgap flux density along the line A-B according to tolerance 

As a pole shape optimization problem of a electric motor, 
we can obtain the robust pole face according that the 
tolerance band is given as input. Also, we make it possible to 
select the proper tolerance according to the condition of 
requiring precision so as to reduce the cost of manufacturing 
the motor. 
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