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An analytical method for calculating the magnetic field in surface-mounted permanent synchronous magnet machines (SPMSM) 

with rotor eccentricity is suggested. In case of rotor eccentricity, boundary conditions between core and permanent magnet, air and 

permanent magnet, air and core are not appropriate for cylindrical coordinates due to different thickness of permanent magnet in 

circumferential direction. In this paper, analytical method of spatial harmonic analysis for SPMSM with rotor eccentricity is suggested. 

Permanent magnet with eccentricity is divided into pieces and boundary condition is applied separately to each piece and air gap flux 

density can be obtained by the potential in air gap. Therefore spatial harmonic analysis can be applied with the same governing 

equations and boundary conditions for motor without eccentricity. The exact solution can be obtained with the suggested method and 

this method is useful for the analysis of motor with rotor eccentricity. 

 
Index Terms—Air gap, Boundary condition, Eccentricity, Magnetic flux density, Magnetic potential, Permanent magnet machine 

 

I. INTRODUCTION 

HE instantaneous torque developed by permanent 

magnet machines and consequently the average and 

pulsating torques depend on the air gap flux density waveform. 

This waveform is affected by magnet configuration, air gap 

length, number of poles, and the direction of magnetization of 

the magnet [1]. These values are essential for accurate air gap 

flux density calculation. Analytical method and finite element 

method are applied to analyze electric motor. Air gap flux 

density can be easily obtained by spatial harmonic analysis 

which is one of analytical methods because shape of motor is 

simplified. Therefore, this method is useful to analyze motor 

with complex shape. Applying spatial harmonic analysis to 

permanent magnet machines has been studied for a long time 

[2]-[4]. Shape of motor is simplified and governing equation is 

derived in terms of cylindrical coordinates to obtain air gap 

flux density using spatial harmonic analysis. The potential in 

air gap and permanent magnet can be obtained by applying 

boundary conditions of magnetic vector potential or magnetic 

scalar potential and air gap flux density can be calculated [5]. 

Characteristics of motor such as back electromotive and 

cogging torque can be obtained by the air gap flux density. In 

case of rotor eccentricity, however, boundary conditions 

between core and permanent magnet, air and permanent 

magnet, air and core are not appropriate for cylindrical 

coordinates due to different thickness of permanent magnet in 

circumferential direction. Therefore, spatial harmonic analysis 

for permanent magnet machine is approximately conducted 

due to mathematically difficult boundary condition in 

cylindrical coordinates. 

In this paper, analytical method of spatial harmonic analysis 

for SPMSM with rotor eccentricity is suggested. Permanent 

magnet with eccentricity is divided into pieces and boundary 

condition is applied separately to each piece and air gap flux 

density can be obtained by the potential in air gap. Therefore, 

exact solution can be obtained, not the approximate solution. 

Characteristics of SPMSM can be verified by applying the 

suggested method. 

II. COMPUTATION OF MAGNETIZATION 

1) Stepwise Method 

Simplified model of rotor eccentricity is shown in Fig.1 and 

Fig.2. In stepwise method which is suggested in this paper, 

permanent magnet is divided into pieces as shown in Fig.1 and 

Fig.2 with red lines. Therefore, different air gap length can be 

applied to each pieces due to the different thickness of 

permanent magnet in circumferential direction. Accordingly, 

the same general equation and boundary conditions for 

SPMSM without eccentricity can be used with no 

mathematical error and exact solution can be obtained. 
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Fig. 1.  Shape of rotor eccentricity 
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Geometry of inner rotor type motor is shown in Fig. 2, 

where a  is radius of iron core surface (outer core), b  is 

radius of iron core surface (inner core), c  is radius of 

permanent magnet surface, g  is mechanical clearance and 
mh  

is magnetization length. 

General equations in terms of polar coordinates are derived 

for slotless and SPMSM. The field vector B  and  H  are 

expressed by 

0I IB H                                                                         (1) 

 0 0II rec IIB H M                                                      (2) 

where 0  is the permeability of free space, rec is the relative 

recoil permeability, (1) is in the air space, (2) is in the 

permanent magnet and M  is the magnetization vector. The 

amplitude of magnetization M is  

   

0

rB
M


                                                                           (3) 

where rB  is residual induction.  

The magnetization vector in polar coordination system can 

be expressed by 

 r rM M a M a                                                             (4) 

The analysis works for both a radial and a parallel 

magnetized rotor. 

 

2) Radial magnetization 

Permanent magnet is divided into pieces in circumferential 

direction and the amplitude of magnetization vector is 

identical for each piece, however, the air gap length varies. 

Radial magnetization and magnetization of each piece with 

red lines are shown in Fig. 3. Magnetization for each piece can 

be expressed as follows 
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where p  is pole pair and 
dvn  is divided number 

 

3) Parallel magnetization 

The same process is applied to parallel magnetization and 

magnetization for each piece can be expressed as 
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where radial component of magnetization is 
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Fig. 3. Stepwise method for calculate waveform of Radial Magnetization 

 
Fig. 4. Stepwise method for calculate waveform of Parallel Magnetization 
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where tangential component of magnetization is 
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III. AIR GAP FIELD DISTRIBUTION 

1) Assumptions 

An analytical solution for air gap field distribution can be 

obtained by following assumptions: a) PM have a linear 

demagnetization characteristic and fully magnetized, b) end-

effects are neglected, c) the stator and rotor core have infinite 

permeability 

 

2) Governing equation 

The scalar magnetic potential can be expressed as follows 

  0 : null identity.
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                    (16) 

Scalar magnetic potential distribution in the air gap is 

governed by Laplace equation and in the permanent magnet 

region is governed by Poisson equation. 
2 0                                                                          (17) 
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where (17) is in the air gap region and (18) is in the 

permanent magnet region 
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3) General solution 
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where the dimension a, b, c are defined in Fig. 2. 
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4) Field Distribution 

The magnetic field components in the air gap and magnet 

regions can be deduced from the general solution of Laplace 

and Poisson equation and the specific boundary conditions. 

In the air gap region, following equations are obtained. 
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These equations are applied to inner rotor type motor, 

however, it can be applied to outer rotor type as a  and b  are 

switched. 

Air gap flux density distribution in radial direction and 

tangential direction obtained by stepwise method are 

compared to result of finite element method for the 

verification and are shown in Fig. 5 and Fig. 6. The two 

models are 4 pole model and outer radius of rotor is 50.5mm. 

Exactly same result between stepwise method and finite 

element method are obtained.  

 

IV. CONCLUSION 

A new analytical method for calculating the magnetic field 

in SPMSM which is stepwise method is suggested. This 

method is mathematically appropriate and the result is exactly 

same compared to finite element analysis. Therefore it can be 

useful for analyzing motor with eccentricity, and furthermore 

any complex shape can be analyzed with exact solution. 
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Fig. 6.  Comparison of tangential flux density between Stepwise Method and FEM 

without eccentricity 
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Fig. 5.  Comparison of radial flux density between Stepwise Method and FEM 

with eccentricity 
 


