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OPTIMUM SHAPE DESIGN OF OUTER ROTOR TYPE BLDC MOTOR
USING POLAR ANISOTROPIC FERRITE BONDED PM

Su-Jin Lee, Jung-Pyo Hong, Senior Member, IEEE

Department of Automotive Engineering, Hanyang University, Seoul, Korea

This paper deals with finding the optimal ratio of height and width of notch to reduce the torque ripple for outer rotor type
Brushless DC motor using polar anisotropic ferrite bonded permanent magnet. In the proposed design method, the optimal notches
are put on the inner stator face, which have an effect on the air gap flux density and shape. Through the space harmonic field analysis,
the position and size of notches are found, in the case of polar anisotropic bonded PM orientation, due to the complicated magnetic
field, the magnetizing direction cannot be determined by simple relational equations. Accordingly, for effective analysis, the
characteristics of BLDC motor analyzed by using the finite element method (FEM) for unusual magnetic-field analysis coupled with
optimal design methodology. In the optimal design, response surface method (RSM) is applied and considers the notches in the stator
pole face as the only design factor. The validity of the proposed method is confirmed by experiments.

Index Terms—Ferrite bonded magnet, magnetic field analysis, optimization, polar anisotropy, Response surface methodology.

I. INTRODUCTION

Recently, bonded permanent magnets(PMs) have been
widely used for many applications such as motors, sensors,
and acoustic transducers [1]-[3]. In many cases, the bonded
magnets are magnetized with a polar shape in order to increase
magnetic flux and obtain flux density with a rectangular wave
form.

The electric auxiliary water pump is a part of the heating
system for hybrid electric vehicles. The motor of auxiliary
water pump has a rotor combined with impeller. In addition,
the material of them is the same as magnetic material. Because
of these reason, it is not easy to magnetize this type of the
motor. Thus, due to the complicated magnetic field in the case
of polar anisotropic bonded PM orientation, the magnetizing
direction cannot be determined by simple relational equations.

For effective analysis, we will propose a method in which
the magnetic field distribution of the mold for anisotropic
orientation is analyzed by using finite element method (FEM).
As a result, the orientation of the polar anisotropic bonded
magnet is determined by the magnetic flux direction.

Concerning the torque ripple reduction, numerous methods
have been heavily published in the literature on PM motor.
However, most of them used for reduction of pulsating torque
based either on an adequate motor design [4]-[5] or on control
techniques [6]. However, since there are few papers that
research the torque ripple reduction of motor in terms of polar
anisotropy, it is needed to suggest an optimization method
considering it. Thus, this paper aims at presenting a technique
to reduce the torque ripple without changing other properties
while skew is not being used.

The characteristics of a BLDC motor analyzed by using the
finite element method (FEM) for magnetic-field analysis
coupled with optimal design methodology. In this optimal
design, response surface method (RSM) is applied and
considers the several notches in the stator pole face as the only

Manuscript received April 10, 2013.
Corresponding author: Jung-Pyo Hong (e-mail: hongjp@hanyang.ac.kr).
Digital Object Identifier inserted by IEEE

design factor. RSM is well suited for making empirical models
that relate the performance of motor to the design parameters.

The goal of this paper is to present a relatively simple and
feasible design approach that will facilitate an improvement in
the above mentioned characteristics without any sacrifice to
other performance of the outer rotor type BLDC using the
anisotropic PM.

II. UNUSUAL MAGNETIZING PROCESS AND ANALYSIS

The motor of sub-water pump is a combination of the rotor
and impeller. Besides, the material of those is the same as
magnetic material. Due to these reason, this type of motor
requires special care in magnetizing.

A. Unusual magnetizing process and analysis

When analyzing the characteristics of the BLDC using the
polar anisotropic bonded PM, it is necessary to give the
orientation of the magnet accurately. Moreover, the
magnetizing direction cannot be determined by simple
relational equations. For this reason, the orientation of the
polar anisotropic bonded magnet is determined by FEM for
unusual magnetic-field analysis. Fig.1 shows the process of
the new magnetic field [7]. To be short, first, in order to find
the accurate magnetic field strength for making a high-
performance the polar anisotropic PM, the alignment behavior
of the PM with a varying magnetic field strength has been
investigated. Second, in order to validate the generated
magnetic field intensity and distribution from a magnetizer,
the structure of the mold is established and used for magnetic
field analysis by FEM for unusual magnetic field analysis as
shown in Fig. 2.

B. Analysis Method

The governing equation for analyzing the magnetic field
distribution of the structure of the mold for this polar
anisotropic bonded magnet is given by (1) [8]. Since the
magnetic field inside the structure of the mold is produced by
a permanent magnet, there is no forced current and no eddy
current, and the analysis becomes a two dimensional static
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Fig. 1. The process of the new magnetic field analysis
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where 4, is the z-component of magnetic vector potential, 1/u
is magnetic resistivity, 1/u, is magnetic resistivity of vacuum,
and M, M, are the x- and y-direction component of
magnetization M of the permanent magnets for orientation.

From the analysis of the magnetization model, the flux
density vectors B, , By(e) of each element in bonded magnet
region are obtained. The magnetization directions of the
anisotropic ferrite material are arranged to same directions as
internal flux, so the magnetization directions, H(C), the
orientation for every element can be determined as

(©
6 =tan ' (2)
B(G)

x

For the elements of part of the polar anisotropic magnet, the
angles determined by Eq. (2) are output to a file as a database
for the following magnetic field analysis.

III. DESIGN OPTIMIZATION

A. Analysis Model and Design parameters

The cross-section view of analysis model and the rotor
fabricated for electric sub-water pump of hybrid vehicle is
shown in Fig. 3. Rated power and rated speed are 12W and
3000rpm respectively.

(a) Flux distribution of magnetization
(b) Magnetization vector of the magnet after magnetized process
Fig. 2. The analysis result for magnetization procedure

(The x-coordinate of a point, The y-coordinate of a point)

Point A = (15.06, 16.24), angle : 206.30°
Point B = (12.33, 16.45), angle : 137.01°

> (The x-coordinate of a point, The y-coordinate of a point)

Point A = (15.07, 16.22), angle : 206.30°
Point B = (12.30, 16.43), angle : 137.01°

Fig. 3. Analysis model

TABLEI
SPECIFICATIONS OF THE ANALYSIS MODEL

List Unit Values
Number of Phases - 3
Number of slots - 6
Number of rotor - 4
Stack length(Stator) mm 15
Stack length(Rotor) mm 17
Number of turn per phase turn 118
Residual induction(Br) T 0.267

The detail specifications of this motor are listed in Table 1.
This motor is driven by rectangular voltage waveforms
coupled with the given rotor position.

In the initial model has not the notch, so we seek the
optimal ratio of height and width of notch to reduce the torque
ripple for outer rotor type Brushless DC motor using polar
anisotropic ferrite bonded PM. As a result, the configuration
of the stator and rotor should not be altered. Fig. 4 is the
design variables. The proposed design process can be roughly
classified as 2 steps; 1) screen activity to select main design
parameters and 2) The application of RSM for Optimization.

B. Screen Activity to Select Main Factor

For the optimal design, sampling of experimental data
should be conducted initially. In order to do that, design of
experiment (DOE) is necessary for effective experiments.
Moreover, if the space is established after investigating
responses according to the variation of each parameter, a lot of
modeling and analysis time is required, and it is difficult to
predict the interaction between the parameters.

Among various DOEs, the full factorial design (FFD)
design is used and approximation is constructed. The
advantages of FFD are written as follows [9].

1) All combinations of design parameters are investigated

2) All main and interaction effects are evaluated without

Confounding

Main and interaction effects of each parameter on the
average torque and torque ripple are displayed in Fig. 5 and 6
separately. The plot of main effect describes the difference
between the average responses at the low and high level of
each parameter. In the plot of interaction effect, there is an
interaction response between the factors.

In conclusion, there is little effect between the parameters
on the average torque, and the width of notch has a large
impact on the torque ripple. Additional, when the motor have
2 notches, torque ripple is a minimum value. Hence, the
design area for RSM is decided by the torque ripple.
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Fig. 4. Design variables of the initial model

C. The application of RSM for Optimization

The RSM seeks to find the relationship between the design
variable and the response through the statistical fitting method,
which is based on the observed data from the system. The
response is generally obtained from real experiments or
computer simulations. Therefore, FEM is performed to obtain
the data of the outer rotor type Brushless DC motor using
polar anisotropic ferrite bonded PM.

The RSM is applied to make appropriate response models
of the average torque and torque ripple. Several types of
functions can be used to generate the response surface
approximation, such as linear, quadratic, cubic, and some
other special functions. However, the polynomial approxi-
mation model F, called a fitted model, is commonly chosen to
be a quadratic fitted response and can be written as follow [9].

k k k
F=p+ z Bix, + z ﬂiixiz + z ﬂ,.jxixj +é& (3
i=1 i=1 i=1

where f,_; are regression coefficients for design variables, &

is a random error. In this paper, the least squares method is
used to estimate unknown coefficients. The fitted coefficients
and response model can be written as follow.

B =XY)'X"Y 4)
Y =XB' (5)
‘Numberof the notch ‘Height (mm) ‘Width (mm)
004140
E |oous T P \\
004130
&
0.04125
i 2 3 0% 055 100 06 13 20
(a) Torque
Numberof the notch Height (mm) Width (mm)
g 2344
i 22.84
£ | 22 L —_—
g | 2 T
£ | 210 \/“
i 3 3 03 05 100 0% 13 20

(b) Torque ripple
Fig. 5. Main effect of each parameter
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Fig. 6. Main effect of each parameter

where X is matrix notation for the levels of the independent
variables, X" is the transpose of the matrix X, and Y is the
vector of the observation. The prime symbol () denotes
estimated values.

Experimental designs for fitting the second order response
surface must involve at least three levels of each variable.
Therefore, for building the second order fitted model, the
central composite design (CCD) is used. Table II displays the
experimental area of CCD. From the above process, the
polynomial models of the responses are given by (6) and (7),
respectively

Yrpgue =0.041-1.18x107 4 -1.98x107° B ©)
+2.78x107* 4> -1.77x107°B* -1.94x10™* 4B
Yrrnerippe = 22.42—1.404-0.114B Rl

+3.554% - 0.0293B* - 2.144B

Fig. 7 showing the change of the responses according to the
dimension of notch is drawn by (6) and (7). The optimal
design of height and width of notch was performed. The
design objectives and constraints are as follows.

Y ~T

Design objective:

Torque initial
YTorqueRipple < TRinitial
TABLEII
CCD AREA FOR RSM
. Level of design parameters
Design parameters Ta 1 0 1 o

B [mm] 0.338 0.4 0.55 0.7 0.762
C [mm] 0.951 1.2 1.8 2.4 2.649

o013
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Fig. 7. Predicted response surface about torque and torque ripple
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Fig. 8. Responses of each fitted model according to the design factos

TABLE III
RESULT OF THE OPTIMIZATION
Design objective Initial model Optimized model
Average torque [Nm] 0.0415 0.0412
Torque ripple [%] 22.35 19.14
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Fig. 10. The comparison of surface flux density

IV. RESULT AND DISCUSSION

The effectiveness of the analysis method is shown by
comparing the analytical values and measured values of the
surface flux density of the polar anisotropic bonded magnets
itself. Fig. 9 shows the testing apparatus. The magnetic
properties of the polar anisotropic bonded PM were measured
by using a flux meter. Fig. 10 compares the measured values
and the analytical values of the radial components of the
surface flux densities of the magnet. Both agree very well and
show that the orientation of the polar anisotropic bonded
magnet determined by this analysis is appropriate.

Fig. 11 shows configurations of optimized and initial design.

As shown in Fig.12, the torque ripple of optimized outer rotor
type Brushless DC motor using polar anisotropic ferrite
bonded permanent magnet is smaller than the initial model.
Table IIT shows the results of the optimization in the optimal
point. Additionally, R* and R,*> are applied to evaluate
accuracy of the fitted model [9]; R* and R,” are very high as
0.998 and 0.997 respectively. This result shows not only the
accuracy of prediction by using RSM, but also successful
optimization results in comparison with the initial value.

Therefore, in the design of the outer rotor type appropriate
ratio of notch should be wide.

V. CONCLUSION

The optimal ratio of height and width of notch to reduce the
torque ripple for outer rotor type BLDC motor using polar
anisotropic bonded PM is determined in this paper.

In order to increase performance of the initial model,
optimization design by RSM combined with FFD is performed
in this paper. Moreover, because the magnetizing direction
cannot be determined by simple relational equations in this
model, the orientation of the polar anisotropic bonded magnet
is determined by FEM for unusual magnetic-field analysis.

Initial Model Optimized Model

D

0 )

Fig. 11. Configuration s of optimized and initial model
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0.00 —— Optimized model Torque ripple[%] : 19.14
) 60 120 180 240 300 360

Electrical angle (°)
Fig. 12. Result of torque analysis

The validity of the analysis method is verified by comparing
the analyzed results with measured ones. Therefore we
confirm that out analysis method is useful for analysis and
design of many electromagnetic machines.
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