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An Improved AC Standstill Method for Testing Inductances of Interior PM
Synchronous Motor Considering Cross-magnetizing Effect
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Abstract -- An inductance measurement method for interior
permanent magnet synchronous machine (IPMSM) is proposed
in this paper. In this method, the motor is measured at standstill
condition, and only a 3-phase voltage source, an oscilloscope and
a DC voltage source are required. Depending on the deductive
dg-axis voltage equations in the stationary frame of reference,
the dg-axis inductances at different current magnetite and
vector angle can be calculated by the measured 3-phase voltages
and currents. And hence, the saturation and cross-magnetizing
effect of the inductances are measurable. This paper introduces
the principle equations, experiment setup, data processing, and
results comparison on the concentrated-winding and
distributed-winding IPMSM:s.

Index Terms--Cross-magnetizing effect, Current vector, Ind-
uctance measurement, Interior permanent magnet synchronous
motors, Standstill experiment method, and Stationary frame of
reference.

I.  INTRODUCTION

Interior permanent magnet synchronous motors (IPMSM)
have been widely applied in the many fields, such as
compressor of house appliance, servo motor of cutting
machine, and traction motor of hybrid vehicle, due to their
high power density, high efficiency and wide operation range
characteristics. Thanks to the finite element method and
computer development, many analysis procedures have been
successfully used to IPMSM design [1]. However, the
experiment methods for verifying the analysis results still
have complexity, accuracy, cost and other problems.

Owning to the permanent magnet, salient structure, and rib,
the inductance of IPMSM becomes especially difficult to
calculate and test [2]. A few numerical methods have been
proposed to solve the calculation problem [1]-[4], [7]. The
saturation, cross-magnetizing and other effect can be
considered and calculated in these methods. There are also
several solutions to measure the inductances [2]-[4], [9]. In
[9] a method called AC standstill is introduced. This method
applies a single phase AC voltage source to one phase motor
winding, and measures the currents and voltages of this phase
and another phase in order to calculate the self- and mutual-
inductances, and further calculate d- and g-axis inductances
with them. It is called standstill because the rotor is locked at
each test position. It is obvious that the effect of current
vector angle varying cannot be reflected, and hence the cross-
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magnetizing effect is regardless in this method. Additionally,
the flux path in two-phase exciting will be different with the
one of three-phase exciting. The other standstill method with
considering the both saturation and cross-magnetizing effect
is introduced in [3]. It fixes the rotor position and uses a
vector controller to generate a stepwise d- or g-axis voltage,
meanwhile, keep the other axis current constant. According
to the current response, the two-axis inductances can be
calculated. The difficulty of this method is the generation of
the stepwise d- or g-axis voltage. In the ordinary 3-phase
inverter, it cannot be directly obtained from the pulse width
modulation (PWM) voltage. A high precision low-pass filter
must be used. According to phase shift between the flux
linkages under the load condition and no-load condition in
the steady state, authors of [8] measured the dg-axis
inductances in the operation conditions. Keep g-axis current
constant, and adjust the load torque so that the total
magnitude and vector angle of the load current can be
covered. The errors in this method are the unregarded PM
demagnetization, and much varying resistance. Based on [8],
an improved method is proposed in [4]. In this method, a
look-up table is used to correct the error due to the
demagnetization of the PM. The complicated and relative
expensive system is the shortage of this method. The
dynamometer, power meter, vector-control motor drive, low-
pass filter, etc. are necessary in order to measure many
required variables.

As mentioned above, the methods in [3], [4] and [8] can
measure the inductance with considering the cross-
magnetizing and saturation effects. When the proper motor
drive is absent, however, these inductance test methods
become unavailable. In addition, the utilization of
dynamometer in [4] and [8] much increases the cost of the
experiment system. Considering the practical requirements,
this paper proposes a simple method to measure the d- and g-
axis inductance of IPMSM. It is based on the AC standstill
method, i.e. processed in standstill condition so that the
dynamometer is not necessary. It uses a 3-phase AC voltage
source so that the vector control drive is not required. It only
measures the phase currents and phase voltages, so the power
meter is eliminated. Hence, it is very suitable for normal
laboratory experiment. The most meaningful point is that this
method also can consider the saturation and cross-



magnetizing effect. In this paper, first, the principle of this
method will be introduced. And then, based on the deductive
equations, the experiment scheme and the processing
methods of measured data will be proposed. After briefly
introduce the inductance calculation method used in this
paper, both a concentrated-winding IPMSM and a
distributed-winding IPMSM will be tested and compared
with the corresponding calculated results.

Il.  IMPROVED STANDSTILL METHOD

In the standstill condition, all measured variables are in the
stationary frame of reference. However, the desired d- and g-
axis inductances are the variables of the synchronous frame
of reference. It is necessary to find the relationship between
the measured variables and desired inductances.

A.  Inductance in Stationary Frame of Reference

The voltage equation of the IPMSM in the stationary frame
of reference is described in (1) [5].
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where 7, is the phase resistance, 4,, is the flux linkage of PM,
p represents the d/dt operator, the subscript e represents the
unit in electrical angle, 6., is the rotor position in stationary
frame of reference, and the L and 4L are calculated by (2).
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L =L+AL
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where L, and L," are the desired g- and d-axis inductances
in the synchronous frame of reference.

B.  Equations of Measurement Method
(1) also can be expressed as (4),
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It is evident that the terms with o, can be eliminated in
the standstill condition. And in order to eliminate the sine and
cosine terms, the rotor position 8., is set to 0° (or 90°). Thus
the equations are simplified as (5).
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where the v,°, v/’ i,* and i, are the g- and d-axis voltages
and currents. According to the Clarke’s transformation in the
stationary frame of reference (6), they can be represented by
3-phase voltages and currents that are directly measurable
variables. In practice, (5) is modified as (7) in order to satisfy
the digital measurement equipment.
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where f represents the voltage or current variable, £ means
the k" value of data, and 7, is the sampling time of the
measurement equipment. Finally, in order to express the
relationship between the inductances and current vector, the
3-phase current should be converted to the magnitude and
angle of the vector in the synchronous frame of reference
with Park’s transformation (8), (9) and (10).
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Fig. 1 Relationship between the current vector in stationary frame of
reference and standstill synchronous frame of reference
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where 6,,* is 0° as assumed before, I, is the magnitude of
current vector, and £ is the angle of current vector referred to

g-axis. As shown in Fig. 1, due to the zero 6,,*, the g- and d-
axis currents are varying with time. Thus, the measured g-

(10)

and d-axis inductances cover the various current vector states.

Their saturation phenomena can be reflected by different
current magnitude, and their cross-magnetizing effect can be
measured by the variation of current vector angle.

I1l. EXPERIMENT DEVICES AND SETUP

A.  Experiment Scheme and Devices

The main purpose of this paper’s method is to measure the
d- and g-axis inductances considering the saturation and
cross-magnetizing effect, and with relatively normal
laboratory equipments and simple system. According to the
deductive equations, the ideal 3-phase AC voltage source (or
current source) is required. Due to desired relationship of
current and inductance, the 3-phase AC current source is
preferred. In this paper, however, the voltage source will be
applied. In the standstill state, there is no back electromotive
force (Back-EMF) in each phase. The rated phase current
usually can be reached at very low voltage exciting.
Therefore, the low voltage range has priority when select the
voltage source, in order to increase the precision. In addition,
there are current components in the equivalent iron-loss
resistances [4], which are not the torque-producing
component and rises as the source frequency increasing. Thus
relatively low frequency of the AC source also is suggested.

As described in (7), totally there are six variables that
should be measured. Unfortunately, more measure channels
in oscilloscope implies more expensive price. Due to the
asymmetric spatial distribution of phase inductance, there is
voltage component in the motor neutral line, i.e. the sum of

the 3-phase voltages is no longer zero. Meanwhile, the sum
of 3-phase currents always equals to zero. Thus, 3-phase
voltage and 2-phase current should be measured. In the case
of this paper, a 4-channel oscilloscope is applied. One among
the 4channels is used to measure the phase c¢ voltage and
phase b current, and combine the two groups of measured
data in later manufacture.

In order to find the rotor zero position, a DC voltage
generator is used. According to the inverse Clarke’s
transformation, a d-axis current can be generated by exciting
two phase with a DC voltage as shown in (11).

,-s 1 0 0

‘ 0

i |=|-1/2 /312 {}: -i2/3/2 (11)
l

p]o|-1/2 312 312

This d-axis current will align the permanent magnet of one
pole with the d-axis. After aligning the zero position, the
rotor may be fixed by a vice grid pliers or a brake. Due to the
rotation of current vector, it is not necessary to rotate the
rotor at each position like the conventional AC standstill
method. The experiment Scheme applied in this paper is
shown in Fig. 2 (a), while the practice experiment setup is
shown in Fig. 3. The total experiment devices include a 50-
Hz 3-phase AC source, a 4-channel oscilloscope, a vice grid
pliers, and a DC voltage generator. If the proper 3-phase AC
voltage source is unavailable, a 3-phase PM synchronous
motor with low
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Fig. 2 Experiment setup of inductance measurement: (a) with 3-phase AC
source; (b) with 3-phase PMSM
—_——

= | Oscilloscope [} . o

.' - " : 8 [ .. :.i
Tested motor
L]

DC voltag
source
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Fig. 3 Experiment setting of inductance measurement in this paper
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Fig. 4 Cross-section of test motors: (a) Concentrated winding IPMSM; (b)
Distributed winding IPMSM

TABLEI
SPECIFICATION OF CONCENTRATED WINDING IPMSM
Parameters Value Unit
Stator outer radii/ Rotor outer radii 80/34.5 mm
Airgap length/ Stack length 0.8/35 mm
Volume of PM 16x3.5x34 mm®
Material of core cogent
No. of turns in series connected 58 turn
No. of parallel circuits 2
Phase resistance (@20°C) 0.159 Ohm
Rated current 8.8 Ams
TABLE I
SPECIFICATION OF DISTRIBUTED WINDING IPMSM
Parameters Value Unit
Stator outer radii/ Rotor outer radii 80/34.5 mm
Airgap length/ Stack length 0.8/35 mm
Volume of PM 16x3.5x34 mm?®
Material of core cogent
No. of turns in series connected 52 turn
No. of parallel circuits 2
Phase resistance (@20°C) 0.145 Ohm

Rated current 8.3 Anms

total harmonic distortion (THD) Back-EMF could be used
to generate the nearly ideal 3-phase voltage as shown in Fig.
2 (b). In the case of large Back-EMF, the rheostat can be
used to reduce the amplitude of the input voltages. And it is
better to use the DC voltage generator to drive the traction
DC motor rather than a voltage-chopping controller, in order
to generate constant frequency.

B.  Experiment IPMSM Models

Two IPMSMs with concentrated winding and distributed
winding are analyzed and tested in this paper in order to
verify the applicability of the proposed method. These two
motors are designed for high speed operation. The rated
speed reaches 26000rpm. It is difficult to find a proper drive
to test this kind of high speed motor. However, the test
results will be quite incorrect in the low speed condition due
to the influence of the losses components. Therefore, the
necessity and advantage of the standstill method appear. The
cross-sections of these two motors are shown in Fig. 4 (a)
and (b), respectively. And their specifications are shown in
Table I and Table 11, respectively.

IV. EXPERIMENT DATA AND PROCESSING

A.  Experiment Results

In the proposed method, the waveforms of the currents and
voltages of the concentrated winding IPMSM and distributed
winding IPMSM measured by digital oscilloscope are shown
in Fig. 5 (a ) and (b), respectively. Because of the different
phase inductance in the certain position, it can be seen that
the magnitude of the each phase voltage or current is
different to the others. These test results are stored as ASCII
format data so that the computer program can handle them.

B.  FFT Filter for Smoothing Measured Data

The waveforms in Fig. 5 are measured and saved with a
digital oscilloscope. The measured voltages and currents
hence are discrete-time data. It is obvious that there is much
noise in the measured wave forms so that the data cannot be
used directly. By means of the Fast Fourier Transform (FFT)
filter, the Fourier components whose frequencies are higher
than the frequency in (12) can be removed from the original
experiment data.

1

fthreshold = }’ZAT (12)

where n is the number of data points considered at one time,
and 4T is the abscissa spacing between two adjacent data

points. Fig. 6 shows the comparison between the original data
and filtered wave form of phase a voltage.



C. Ripple Elimination
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Fig. 5 Measured phase voltages and currents in one period at about 3 Ay :
(a) concentrated winding IPMSM; (b) distributed winding IPMSM.
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Fig. 6 Comparison of the original data and the filtered data of phase-a
voltage waveforms.
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Phase a Voltage (V)

measured phase voltages and currents and deductive formula
(7). It can be seen that the raw inductance results have some
ripples. The dominate reason is that the slots and teeth of
stator produces the different permeability in the spatial
distribution. That is also the reason why the inductance

curves of the distributed winding IPMSM are smoother than
those of the concentrated winding IPMSM. Additionally, due
to the asymmetric circuit, the variation of current magnitude
and vector angle also may generate different saturation and
cross-magnetizing effect. In order to eliminate the ripple of
calculated inductances, two methods are proposed in this
paper. One is that each current point is tested twice. One time
makes the rotor d-axis align to the d-axis of the stationary
frame of reference as mentioned previously, the other time
rotate rotor d-axis to align g-axis of the stationary frame of
reference, i.e. a tooth of stator. Owing to the 90° rotation, the
calculated d- and g-axis inductances should be exchanged.
Finally, the waveform can be smoothed by solving the mean
value of the calculated inductances in the two positions. This
method in the theory can reduce the influence of space
harmonic components. But both the experiment operation and
post data manufacture get much complicated.

The other method is to use the Polynomial Least-square
function to fit the curve. The general M-1 orders polynomial
least-square function is described in (13).

f(x)=a, +ax+a,x’ +..+a,x"* (13)

where ay, a;, a...ay.; are chosen to minimize the least-
square loss function (14). [6]
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(b)
Fig. 7 Raw measured d- and g-axis inductances at certain voltage: (a)
concentrated winding IPMSM; (b) distributed winding IPMSM.
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where g, is the measurement error of the i data, and N is the
number of sampling data.

According to the relationship of current vector angle and
electrical position as shown in Fig. 8, the data from 60° to
240° electrical position can cover the current vector angle
from the -90° to 90°. Thus, the data in this section is selected
and processed by curve fitting. The fitting results of
concentrated winding IPMSM and distributed winding
IPMSM are shown in Fig. 9 (a) and (b), respectively.

V. CALCULATION METHOD

The inductance calculation method used in this paper is
introduced in [7]. A phasor diagram of IPMSM is shown in
Fig. 10. In the solid-line part, it can be seen that there are the
relationships (15) and (16)
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Fig. 8 Current vector angle: (a) concentrated winding IPMSM; (b) distributed
winding IPMSM.
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Fig. 9 Curve fitting of raw inductance results: (a) concentrated winding
IPMSM; (b) distributed winding IPMSM.

(16)

where y, is the flux linkage generated by permanent magnet



in no-load condition, w, is the flux linkage generated by
permanent magnet and excited armature current, and the o is
the phase shift between the no-load and load Back-EMF
no-load flux linkages
calculation
]
Magneto-static field FEA
with certain 7, and g
v
| Load flux linkages |

| FFT and dq transformation |
‘ Ia=1a+AIa

B=p+ B

Find a with no-load flux
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Fig. 11 Procedure of vector control method

According to these equations, an inductance calculation
procedure is described in Fig. 11. The detail of this
inductance method is introduced in [7].

VI.

The d- and g-axis inductances of the concentrated winding
IPMSM and distributed winding IPMSM calculated by the
above method are shown in Fig. 12 (a) and (b), respectively.
It can be seen that the inductances of distributed winding
IPMSM have no much differences as the current magnitude
and vector angle varying, which means the significant cross-
magnetizing and saturation effects can not be reflected well.
Due to the air cooling method, the current can not reach high.
Therefore, the motor always operates under the unsaturated
condition.

The d- and g-axis inductances of these two motors
measured with the proposed method are shown in Fig. 13 (a)
and (b), respectively. Compared with the calculated results,
the experimental are very similar to them. It can be seen that
the measured d-axis inductances are larger than those of
calculation. This is because the rotor d-axis is almost aligned
with the stator tooth when find the motor 0° electrical
position and without eliminating the space harmonics. The
measured inductances of concentrated winding IPMSM have
relatively greater differences with the calculated. As
mentioned before, the deductive equations are based on the
sinusoidal winding distribution. The concentrated winding
generates more space harmonics which strongly influence the
accuracy of the principle equations. Additionally, the analysis
process does not consider the current components in the iron-
loss equivalent resistances. Therefore, larger current is used

COMPARISONS OF RESULTS AND DISCUSSION

to produce the flux linkage in the numerical calculation
process.

Due to the sinusoidal current wave form, the denominator
current terms in (7) may generate the singularity points in the
entire electrical period. The measured inductances around
these singularity points are strongly distorted, which restricts
the measurable inductance range. Hence, it can be seen that
there is bullish trend near the 80° in the tested d-axis
inductance. However, the simplicity and acceptable accuracy
make this method be a prefer choice in some situation.
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Fig. 12 Calculated inductances: (a) d-axis inductances; (b) g-axis inductances
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Fig. 13 Measured inductances: (a) d-axis inductances; (b) g-axis inductances

VII.  CONCLUSION

The d- and g-axis inductance calculation and measurement
are very important to the performance prediction and optimal
control of IPMSM. Several measurement methods have been
proposed in the previous literatures. However, the inherent
drawback or complicated system configuration lead these
methods are not always available. Based on this problem, this
paper proposed a simple experiment method to measure the
d- and g-axis inductance of IPMSM in the stationary
reference frame. After a series of data processing, the d- and
g-axis inductances reflecting cross-magnetizing and
saturation effects can be obtained. Compared with the
calculated results, the inductances measured in this method
are reliable, especially for the distributed winding motor.
Further, the principle equations will be deducted with
account for the space harmonics of concentrated winding.

REFERENCES

Periodicals:
[1] J. Y. Lee, S. H. Lee, G. H. Lee, and J. P. Hong, “Determination of
parameters considering magnetic nonlinearity in an interior permanent

magnet synchronous motor,” IEEE Trans. Magn., Vol. 42, No. 4, Apr.
2006.

[2] R. Dutta, and M. F. Rahman, “A comparative analysis of two test
methods of measuring d- and g-axis inductances of interior permanent
magnet machine,” IEEE Trans. Magn., Vol. 42, No. 11, Nov. 2006.

[3] B. “Stumberger, G. “Stumberger, D. Dolinar, A. Hamler, and M. Trlep,
"Evaluation of saturation and cross-magnetization effects in interior
permanent-magnet synchronous motor," IEEE Trans. Ind. Appl., Vol.
39, No. 5, Sept./Oct. 2003.

[4] K. M. Rahman and S. Hiti, "Identification of machine parameters of a
synchronous motor, " [EEE Trans. Ind. Appl., Vol. 41, No. 2, Mar./Apr.
2005.

[5] G. D. Andreescu, C. I. Pitic, F. Blaabjerg, and I. Boldea, “Combined
Flux Observer With Signal Injection Enhancement for Wide Speed
Range Sensorless Direct Torque Control of IPMSM Drives," [EEE
Trans. Energy Conv., vol.23. no. 2,pp.393-402, June. 2008.

Books:

[6] W. H. Press, etc., Numerical Recipes in C: The Art of Scientific
Computing 2" edition. Cambridge University Press, Oct. 1992.

Papers from Conference Proceedings (Published):

[71 T. Sun, S. O. Kwon, S. H. Lee, and J. P. Hong, "Investigation and
Comparison of Inductance Calculation Methods in Interior Permanent
Magnet Synchronous Motors, " in Proc. 2008 I|EEE Electrical
Machines and Systems, Conf., pp. 3131-3136.

[8] E. C. Lovelace, T. M. Jahns, J. Wai, T. Keim, J. H. Lang, D. D.
Wentzloff, F. Leonardi, J. M. Miller, "Design and experimental
verification of a direct-drive interior PM synchronous machine using a
saturable lumped-parameter model,” in Proc. 2002 IEEE Ind. Appl.
Conf., Vol. 4, pp. 2486-2492.

Standards:
[91 I[EEE Standard Procedure for Obtaining Synchronous Machine

Parameters by Standstill Frequency Response Testing.,|EEE Standard
115A-1987, 1987



	ECCE2009
	ECCE2009_손도
	ECCE2009_An Improved AC Standstill Method for Testing Inductances of Interior PM Synchronous Motor Considering Cross-magnetizing Effect_손도
	I.   Introduction
	II.   Improved Standstill Method
	A.   Inductance in Stationary Frame of Reference
	B.   Equations of Measurement Method

	III.   Experiment Devices and Setup
	A.   Experiment Scheme and Devices
	B.   Experiment IPMSM Models

	IV.   Experiment Data and Processing
	A.   Experiment Results
	B.   FFT Filter for Smoothing Measured Data
	C.   Ripple Elimination

	V.   Calculation Method
	VI.   Comparisons of Results and Discussion
	VII.   Conclusion
	References


