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Abstract—Most of Contactless Power Transfer Systems
(CPTS) have independent structure to improve power
transmission efficiency. Sometimes, however, CPTS needs to be a
part of moving system to reduce overall system volume.
Therefore, this paper proposes a CPTS combined with a linear
electric machine loading robots. A prototype CPTS has been
constructed for testing and performance evaluation. This paper
examines the performance of the prototype by simulation and
test with AC-voltage source and PWM-voltage source.

I. INTRODUCTION

Conventional power supply system drags long power
cables directly to transfer power and produces many particles
because of mechanical friction between power cables and
surface of the nearby instruments whereas Contactless Power
Transfer System (CPTS) delivers electrical power to load with
the help of contactless transformer that has no mechanical
contact. In this method, CPTS doesn’t produce particles,
thereby making it adaptable to the industry applications where
clean circumstances are needed such as semi-conductor, LCD,
and PDP manufacturing factory [1].

Many kinds of CPTS have been proposed recently,
supplying mobile loads and used in flexible power supply
systems. Most of these systems use transformers with
extended primary windings to transmit power contactlessly
from the primary to the secondary. The several examples are
introduced in [2]. The great many of these systems have
independent structure to improve power transmission
efficiency, and the structural characteristics are using ferrite
core or having large air-gaps [1-4].

Sometimes, however, CPTS needs to be a part of moving
system to reduce overall system volume, and to satisfy this
purpose this paper proposes a CPTS combined with a linear
electric machine loading robots. A prototype CPTS has been
constructed for testing and performance evaluation, and it was
introduced in [5] briefly by one of these authors. For research
term, the winding was changed and the characteristics were
analyzed in more detail.

In the first chapter the basic configuration of the prototype
and its magnetic and electric circuit models are introduced. In
the next chapter the methods of operation are explained, and
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Fig. 1. Configuration of the proposed contactless power transfer system
(CPTS) combined with a linear electric machine

one method is selected to operate the prototype in the test.
Then, the performance of the prototype is examined by
simulation and test with AC-voltage source and PWM-voltage
source. Now the proposed CPTS is at development stage, so
how much power is transferred is a matter of the concern. The
characteristics of the prototype are evaluated in a point of the
concern.

II. SYSTEM CONFIGURATION AND ANALYSIS MODELS

A. Configuration

Fig. 1 shows the proposed CPTS combined with electric
machine. The linear transfer machine (LTM) is a PM type
transverse flux linear machine (TFLM), and the stator
functions an additional role as a primary part of the CPTS.
The stator core is a primary core for CPTS, and the stator coil
can be the primary coil of CPTS or separated from the coil of
CPTS as shown in Fig. 1. The secondary of CPTS and mover
of TFLM are linked by base frame loading robot structures.
The air-gap length of CPTS is relatively small in comparison
to other power transfer systems, and the core is iron core. The
detail specifications are listed in Table 1.

B. Electric and Magnetic Models

To simulate the CPTS, the transformer equivalent circuit
is used as an electric model [5]. The simulation is performed
by a commercial program, PSIM with the transformer
equivalent circuit as shown in Fig. 2. The necessary
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parameters for simulation are listed in Table 2. For the load,
resistance is only considered.

If all parameters are measured, the simulation results using
the parameters are very reliable. However, it is difficult to
measure magnetic and leakage inductances separately. The
inductances are calculated from the linkage flux obtained by
magnetic field analysis using a 3-dimensional Equivalent
Magnetic Circuit Network (3D EMCN) method [6]
considering magnetic nonlinearity and 3D magnetic path. The
accuracy of the analysis results by the method for TFLMs has
been already proved in [6]. Fig. 3 shows the magnetic models
of CPTS system.

The leakage inductance of the primary winding is
calculated by the linkage flux of MMF1 section of the model
ml and m3. When the leakage inductance of the secondary
winding is calculated by the experimental equation in [6], the
value is very small as much as can be ignored. The
magnetizing inductance is calculated by the linkage flux of
MMF?2 section of the model m2. The calculated inductances
are listed in Table 2.

TABLEI
SPECIFICATIONS OF THE PROTOTYPE CPTS
Material Conductor of the primary winding 1x3 mm’
Conductor of the secondary winding o1 mm
Core in the primary S12 0.35t
Core in the secondary S12 0.35t
Core in the mover S20C solid
core
PM in the mover 1.2 T
Dimension Length of the primary 1360 mm
Length of the secondary 160 mm
Length of the mover 160 mm
Length of the airgap 1 mm

TABLE II
PARAMETERS FOR CPTS SIMULATION

Symbol Meaning Value
Calculated Measured
v Input voltage of primary winding 70Vrms /
p (AC source / PWM source) 300Vpeak
Rp R§51s.tance of the primary 1240 1210
winding
Rs Rf}ms}ance of the secondary 1420 1410
winding
Lp Lgakage ' 1n§iuctance of the 29 4 mH )
primary winding
Ls Leakage 1r‘1du_ctance of the 10° mH )
secondary winding
Lm Magentl;mg inductance (referred 127 mH )
to the primary)
Np Nf)' Aof turns of the primary ) 78 turn
winding
N NQ. pf turns of the secondary 143 turn
winding
Ry Resistance of the load Variable (10, 20, 40 Q)

Note) 0.35t = thickness is 0.35mm

Transformer

- ]1})[1[ Voltage

Load resistance =

Fig. 2. Transformer equivalent circuit for CPTS simulation

»  Primary (‘\érc
L

MMEL

Secondary Core
Mover of TFLM
\IMEFS

MMFT

’, MMEL

(a) ml

(b) m2

(c)m3

Fig. 3. Meshed analysis models for 3D EMCN analysis : (a) ml : primary
core model, (b) m2 : primary core and secondary core model, (¢) m3 :
primary core and mover of TFLM model
( MMF]1 : magneto-motive force of the stator or primary winding

MMF2 : magneto-motive force of the secondary winding

MMEF?3 : magneto-motive force of the PM in the mover )

III. METHODS OF OPERATION

The methods of operation are classified into two: static
operation and dynamic operation. This classification is
according to movement of CPTS.

A. Static Operation

In static operation, the CPTS is working at standstill. When
the mover of TFLM is going and return, the mover speed is
zero at turning points. The time of standstill is variable
depending on application systems. The CPTS can be working
at this time to charge a battery, and the robot or electric
system on the mover can be operated by the battery source.

While the CPTS is operating, the mover is stopped. That
means the current of stator winding for TFLM is zero. With
the same coil, the two systems — TFLM and the CPTS- can be
operated in sequence. Since the CPTS is operated independent
of TFLM, CPTS is considered as a transformer with airgap.

The most difference from general transformers with airgap
is that the CPTS is operated by PWM-voltage source. If
TFLM is driven by pure AC-voltage source, the CPTS can be
operated by the source in sequence. However, most electric
machines including TFLM are driven by PWM-voltage
source, and the CPTS should be operated by the same driver
in order to save driver cost.

In this paper, the prototype of CPTS is operated by AC
power supply to compare the test results with the simulation
results of the circuit shown in Fig. 2. Then the prototype of
CPTS is also operated by full-bridge converter to test under
the real application cases. These simulated and test results are
shown in the next chapter.

B. Dynamic Operation

Dynamic operation is that the CPTS is working while the
mover is moving. In this case, the frequency of input voltage
or current is influenced by switching frequency of stator
current of TFLM. If the input frequency of the CPTS is high,
the core losses become bigger. So, it is a future work that
operating the CPTS at the same frequency of stator current.
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IV. ANALYSIS AND EXPERIMENTAL RESULTS

A. Results by AC-voltage source

Fig. 4 shows the analysis and measured currents and
powers according to load resistance and input frequency
variation. The input voltage and current of primary winding
are called here primary voltage and primary current
respectively. The voltage and current of load resistance are
considered as voltage and current of secondary winding, and
they are called here secondary voltage and secondary current
respectively.

The primary voltage is 70 Vrms, and it is supplied by AC
power supply. The primary current is reduced depending on
frequency increment because the primary voltage is constant
and impedance is increasing according to frequency. At the
same frequency, the current and power are decrease
depending on resistance increment. It is the same reason as
decreasing current according to frequency. The simulation
results agreement well with measured results for the primary
winding.

In contrast to primary, there are conspicuous errors
between simulation and measured results for the secondary
winding. The main reason of the errors can be that the core-
loss is not considered in the simulation. To reduce the errors,
the simulation circuit can be compensated by core-loss
resistance such as the circuit in [7].

However if a constant core-loss resistance is used for the
circuit, some errors are still remained. If variable core-loss
resistances are used according to frequencies and currents,
lots of efforts are required. Without considering core-loss, the
variation aspect of secondary current and power are well
estimated. Therefore at the development stage, the circuit as
shown in Fig. 2 or referred in [S] is useful to simulate the
characteristics of the CPTS.

As mentioned at Introduction chapter, how much power is
transferred is a matter of the concern for the CPTS in this
developing stage. That means the maximum secondary power
rather than maximum transfer ratio or efficiency. In
consequence of simulation and experiment results, the
maximum secondary power can be obtained by higher
primary power (input power), lower frequency, and lower
resistance of load.

Fig. 5 shows the analysis and measured voltages and
currents at resistance of load 10 Ohm and the frequency
100Hz. It is one point of each graph in Fig. 4. When the
magnitude and phase of voltages and currents are compared in
the time domain, it is confirmed again that the measured and
simulated results are very agreement.

The magnitude difference between primary and secondary
is due to storage power in airgap and core losses [8], and the
phase difference is due to impedance difference. Since large
resistance is considered as a load in the secondary, the power
factor of secondary is almost 1.

B. Results by PWM-voltage source

Fig. 6 shows the measured voltages and currents in the time
domain when the CPTS is operated by PWM-voltage source
supplied by the full-bridge converter.
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Fig. 5. Measured and simulated results by AC-voltage source at resistance
of load 10 Ohm and frequency 100Hz

The Fig. 6 (a) is the results at resistance of load 10 Ohm
and the frequency 100Hz. Although the reference primary
current is 5A, the measured primary current is 4.7A. Since the
primary current is 4.3A in Fig. 5, the results of Fig. 6 (a) can
be compared with the results of Fig. 5 under the almost same
condition. If the primary current is sinusoid by the PWM
voltage, the secondary voltage and current are also sinusoid.
Further more, the voltage and current are the same as those
obtained by AC power supply test except harmonics.

The Fig. 6 (b) is the results at resistance of load 10 Ohm,
the frequency 100Hz, and the reference primary current is
20A. As compared with the condition of Fig. 6 (a), only the
reference primary current is increased. Since the peak voltage
of PWM is limited to 300V and the inductance of primary
winding is large considering converter system, the primary
current can not be sinusoidal wave. When the primary current
is not sinusoid, the secondary voltage and current waves are
also distorted.

The Fig. 6 (c) is the results at resistance of load 10 Ohm,
the frequency 300Hz, and the reference primary current is
20A. As compared with the condition of Fig. 6 (b), only
frequency is increased. Since in the Fig. 6 (b) the condition
already exceed the limit of control capacity, the primary
current can reach to the reference value in the condition of
Fig. 6 (c) because the electro-motive force (emf) and
impedance are higher at the higher frequency.

Fig. 7 shows the measured results for resistance of load and
frequency variation. The primary voltage is 300 Vpeak, and it
is supplied by full-bridge converter. By the current control,
the primary voltage is variable to keep the constant current.
The primary reference current is 20A, and the results of Fig. 6
(b) and Fig. 6 (c) are the points on the Fig. 7.

In comparison with the results by AC-voltage source in Fig.
4, the results by PWM-voltage source in Fig. 7 have
breakpoints at low frequency. This aspect is similar to the
results in [5] which are also obtained by the same converter
source. It is the reason of voltage and current wave distortion.
At the low frequency such as 50Hz, the current is sinusoid
like Fig. 6 (a). However at the higher frequency such as
100Hz, the voltage wave is changed into square wave for
current control, and the current wave is distorted like Fig. 6
(b), and it causes voltage and power increment. After voltage
saturation, the current is reduced at the higher frequency such
as 200~300Hz, and it causes power decrement like Fig. 6 (c).

In consequence of experiment results above, the aspects of
secondary characteristics are depending on the aspects of
primary characteristics. And if there is no voltage limit, the
results by PWM-voltage source are the same as the results by
AC-voltage source. That means the maximum secondary
power can be obtained by higher primary power (input
power), lower frequency, and lower resistance of load.

V. CONCLUSIONS

This paper dealt with the prototype of CPTS combined with
TFLM. The CPTS is very different from general transformers
or other contactless converter systems in aspects of having
air-gap and iron cores, driven by PWM-voltage at low
frequency. Further more, the leakage inductance is very large
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