
12. ELECTRICAL MACHINES AND DRIVES 

Abstract — This paper presents a method to calculate 
motor parameters considering magnetic nonlinearity in solid 
core Transverse Flux Linear Motors (TFLM) for dynamic 
simulation. The magnetic field characteristics of the machine 
are calculated by using 3-dimensional Equivalent Magnetic 
Circuit Network (3D EMCN) method, and parameters for 
dynamic simulation such as inductance, electromagnetic force 
(emf), thrust, core loss, and mechanical load are calculated by 
using the magnetic field analysis results. The calculated 
parameters are used as a form of lookup-table in the dynamic 
simulation model. Therefore, the accuracy of the method is 
examined by the comparison of input currents which are 
calculated by using the dynamic simulation model and 
measured for an example TFLM. 

I. INTRODUCTION 
Transverse Flux Linear Motors (TFLMs) have a number of 

useful features distinguished from other motors. TFLM offers 
a very high force density, and it is suitable for direct drive 
applications because the mover can produce high flux density 
in air gap compared with other motor types. This high flux 
density, however, can cause considerable core losses, which 
affect the motor performances. When solid core is used for 
rigid and inexpensive fabrication, the saturation effect and 
core losses make the motor performance reduced a lot. 

Therefore this paper deals with accurate characteristic 
analysis for solid core TFLM. First of all, mathematical model 
of dynamic simulation is made, then, motor parameter 
calculation methods are proposed considering magnetic 
nonlinearity and 3D magnetic path for reliable dynamic 
simulation. The parameters such as inductance, 
electromagnetic force (emf), thrust, core loss, and mechanical 
load are calculated after magnetic field analysis performed by 
using 3-dimensional Equivalent Magnetic Circuit Network 
(3D EMCN) method [1]. The calculated parameters are used 
as a form of lookup-table in the dynamic simulation model. 

In order to verify the usefulness of the method, calculated 
by dynamic simulation and measured currents are compared 
for an example solid core TFLM. 

II. ANALYSIS MODEL 

A. Features of TFLM 
Fig. 1 shows configurations of a permanent magnet (PM) 

type TFLM fabricated to test its application to a high power 
transportation system. Both the mover and stator have solid 
core for rigid fabrication, and PM and armature coils are in the 
mover. 

The principle of force generation of objective model is 
shown in Fig. 2 which is the 'AA  section of Fig. 1. In the 
mover poles, the two magnetic polarities by PMs, N and S, are 
changed to one polarity, N or S, by offset one polarity against 
the polarity of current coil. Therefore, when the polarity of 
current coil is N, ideally there is only polarity N in the mover. 
Alternating current functions as a switch turning on and off 
the mover polarity, therefore, mover and stator generate the 
total thrust in one direction [2].  

As roughly shown in Fig. 2 (a), sine wave source makes 
better output characteristics; the output power is higher, and 
the thrust ripple is lower if two more phases are used. In the 
aspect of drive, sine wave current control has also better 
response characteristics. Therefore, for industry application, 
sine wave source is considered to run TFLM, and the square 
wave source is dealt for static characteristic test [1]. 

B. Dynamic Simulation Model 
The drive system for TFLM is composed of three main 

parts. Beside the motor there is the power electronic part and 
the controller. The converter consists of a switch-mode 
inverter that is coupled to the rectifier by a dc-link capacitor. 
Each phase is controlled by current controller that can be a PI 
or hysteresis band controller. The rough block diagram of 
control system is as shown in Fig. 3 (a) 

The most inner part of this model is one single motor phase 
which is based on the following voltage equation: 

 
d d dx d di d diV Ri Ri Ri v L
dt dx dt di dt dx dt
λ λ λ λ

= + = + + = + + ⋅  (1) 

where, V, i, R, λ , and L are voltage, current, resistance, total 
linkage flux, and inductance, respectively. Because all phases 
of TFLM are separated, there are no mutual components of 
inductance. 

 
Fig. 1. Configuration of one-phase TFLM 
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(a) current mmfs and generated thrusts for one phase 

 
(b) variation of mover polarity 

Fig. 2. Principle of force generation 
 

To this equation, (1), the mechanical equation is added. 
 

    x lF F M a M v M x− = ⋅ = ⋅ = ⋅             (2) 
where Fx, Fl, M, a, v, and x are thrust, load, total mover’s mass, 
acceleration, velocity, and distance, respectively. The (1) and 
(2) are expressed by block diagrams as shown in Fig. 3 (b) 
and (c). To reduce calculation time, core losses are considered 
as lookup table in the block diagram of mechanical equation 
instead of using 3D transient analysis with voltage equation 

C. Parameter determination 
Basically, all parameters are calculated using the magnetic 

field analysis results obtained by using 3D EMCN. 
Although in the dynamic simulation the current source is 
considered as sine wave, in the magnetic filed analysis the 
current source is square wave to make lookup table 
according to input current and mover displacement.  After 
that, each parameter is calculated as follows; 
1) inductance and emf : with flux variation depending on 
current and displacement as shown in (1), inductance and 
emf are calculated. If the coil is in the stator, the inductance 
calculation method is in [1] 
2) thrust : it is calculated by using Maxwell Stress Tensor. 
3) core losss : the process used in this paper is the 
traditional method introduced in [2]. To get accurate results, 
the magnetic field analysis for the first step of core loss 
calculation should be performed with running current 
source. Therefore sine wave source should be considered in 
magnetic field analysis.  
4) mechanical load : in the linear motor, the product of 
perpendicular load and friction coefficient is mechanical 
load in steady state [3]. Not only total mover’s mass but 
also attraction or normal force can be perpendicular load. 

III. RESULTS AND DISCUSSION 
The specifications and magnetic material characteristics, 

which are B-H curve and core loss data obtained by Epstein 
frame test, are the same as those of the solid stator core model 
in [2] except number of turns. With those conditions, Fig. 4 
shows the calculated parameters according to current and 
displacement. 

The verification of the usefulness of the method will be 
shown in extended paper by comparing simulated and 
measured currents. 
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(a) block diagram of control system 

 
(b) block diagram of voltage equation 

 

(c) block diagram of mechanical equation 
Fig. 3. Block diagram for dynamic simulation of TFLM 

 
Fig. 4. Magnetic parameters for dynamic simulation 
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