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Abstract — This paper presents a method to calculate the 
motor performance of interior permanent magnet 
synchronous motors. Traditionally, the motor analysis is 
accomplished by using equivalent circuit, which consists of 
motor parameters including constant inductances.  However, 
inductances are affected critically magnetic saturation 
according to both the load current and the current angle.  This 
paper proposes the analysis method with considering 
fluctuations of these inductances.  

I. INTRODUCTION 
Interior permanent magnet synchronous motors 

(IPMSM) are widely used in industrial applications, which 
require high power density. In the applications such as 
electric vehicles and compressor drives, the efficiency is 
one of the most important performances. The operating 
efficiency depends on the control strategies. Several control 
methods have been proposed in order to reduce the loss of 
IPMSM and improve their performance. One of the control 
strategies is the maximum torque-per-ampere current 
control. The possibility of operating methods depends on 
parameters of IPMSM. Therefore, the effects of magnetic 
saturation due to both the armature current and the current 
angle are dominant. Specially, the d- and q-axis inducta- 
nces vary depending on the d- and q-axis current 
respectively, and as a result the control performances are 
affected by the magnetic saturation. This paper presents a 
simulation method to decide correct the current vector of 
IPMSM.  

II. SIMULATION OF IPMSM  
An equivalent circuit analysis for IPMSM are based on 

a rotate synchronous d-q reference frame, and frequently 
used to simulate their performances. The mathematical 
model of the equivalent circuit is given as follow the 
voltage equations [1]-[2].  
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Where id and iq are d- and q-axis components of armature 
current, vd and vq are d- and q-axis components of terminal 
voltage, Ld and Lq are d- and q-axis components of 
armature self-inductances, Rs is armature resistance per 
phase, Ψa

 is 3 2 Ψf, Ψf is maximum flux-linkage due to 

permanent magnet per phase, p is differential operator, Pn is 
number of pole pairs. β is current angle.  

IPMSM has a saliency and the reluctance torque is 
available, the current vector is controlled in order to 
produce the maximum torque per current in the constant 
torque region. The condition of the maximum torque-per-
ampere current control can be derived by differentiating 
equation (2) with respect to β and equating the derivatives 
to zero. As a result, the condition is given by [1]-[2] 
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The above equation is derived as if the magnetic saturation 
is ignored and Ld and Lq are assumed to be constant 
parameter. It seems that the operating performances 
become worse and the control system may become unstable.  

Therefore, in order to improve the operating 
performances, the decision method of the current vector 
should be considering the effects of magnetic saturation. In 
this paper, the proposed computation method is based on 
the iteration algorithm shown in Fig. 1. Also, the iteration 
method can be solved by using a numerical optimization 
algorithm. In the proposed Method, Ld and Lq are calculated 
by FEA according to the d- and q-axis current [3] and used 
in the torque calculation. Fig. 2 and Fig 3 show the Ld and 
Lq of the prototype IPMSM. The Ld and Lq vary depending 
on the d- and q-axis current respectively.  
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Fig. 1. Flow-chart of the proposed simulation method 
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Fig. 2. Ld profile according to the d- and q-axis current 
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Fig. 3. Lq profile according to the d- and q-axis current 

III. SIMULATION RESULTS  
The parameters of the prototype IPMSM are listed in 

Table I, When d-axis is placed in the direction of resistance 
as shown in Fig. 4.a, Ld is a value at id=145A, iq=0A, and 
when q-axis is placed in the direction of least resistance as 
shown in Fig. 4.b, Lq is a value at iq =145A, id=0A. The 
simulation results of the torque and the terminal voltage 
controlled by the maximum torque-per-current control are 
shown in Fig. 5. The solid-circle curves represent the 
calculated characteristics without consideration of the 
magnetic saturation, in which the constant value of 
inductances (listed Table 1.) and equation (3) are used. The 
open-circle curves represent the calculated characteristics 
with consideration of magnetic saturation, in which the 
value of inductances is based on both Fig 2 and Fig3 
according to the d- and q-axis current.  Fig. 5. shows the 
calculated results of the armature current and current angle, 
and Fig. 6. shows the computed results of the power and 
efficiency.  

 TABLE I 
SPECIFICATION OF PROTOTYPE IPMSM 

Parameters Value Unit 
Number of Phase 3 phase 
Number of Pole 4 pole 

DC linkage Voltage 42 V 
Rated Speed 3500 rpm 
Rated Torque 9.8 N-m 

Back-emf coefficient  3.49 mV/rpm 
Resistance per a phase 12.5 mΩ 

Ld 0.188 mH 
Lq 0.324 mH 

Maximum current  145 A 
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Fig. 4. Cross section of IPMSM 
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Fig. 5. Torque and voltage characteristics of prototype IPMSM 
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Fig. 6. Armature current and angle characteristics of prototype IPMSM 
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Fig. 7. Efficiency and power characteristics of prototype IPMSM 

IV. CONCLUSION 
The consideration of magnetic saturation was proposed 

for the analysis method of the IPMSM performance in this 
paper. The Ld and Lq of IPMSM vary depending on the d- 
and q-axis current because of the magnetic saturation. The  
Ld and Lq are simply used as the proposed analysis method. 
It can be considered that the ability of the proposed method 
is useful for the analysis of operating performances of the 
IPMSM. 
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