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Abstract-- The Interior Permanent Magnet Synchronous
Motor (IPMSM) is widely used for several industrial
applications, because the motor can have high performance
due to the reluctance torque generated by the difference of
d-q axes inductance, and then the motor has much more
torque than the Surface Permanent Magnet Synchronous
Motor (SPMSM).

In order to miniature and improve the manufacture
efficiency of the motor, it has concentrated winding, because
concentrated winding can reduce the motor volume and
make the manufacture be simpler compared with the
distributed winding. When motor with concentrated
winding is designed, pole-slot combinations are very
important. In accordance with pole-slot combinations, the
winding factor can be increased, and at the same time d-q
axes inductance and saliency ratio are influenced. The
parameters, such as back electromotive force (BEMF), d-q
axes inductance, and saliency ratio, are very important
which influent characteristics of the motor and operating
performance. Therefore, this paper presents the comparison
of characteristics and operating performance by pole-slot
combinations in IPMSM with concentrated winding.

Index Terms—concentrated winding, interior permanent
magnet synchronous motor, pole-slot combinations, winding
factor.

. INTRODUCTION

Permanent magnet motors (PM motors) have a wide
application because they offer excellent maintainability,
controllability, and environmental endurance while
providing high-efficiency operation at high power factor

[1].

Interior Permanent Magnet Synchronous Motor
(IPMSM) has high energy density, compared with
Surface Permanent Magnet Synchronous Motor

(SPMSM) because it has reluctance torque by difference
of d-q axes inductance in addition to magnetic torque by
the permanent magnet, and be easy using flux weakening
control at constant power operation. Therefore IPMSM is
increasingly employed for electric vehicles and
compressor drives.

This work was supported by grant no.RT104-01-03 from the regional
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The winding layouts of motor generally are divided
into two layouts that are concentrated winding and
distributed winding. The concentrated winding has
shorter end winding and simpler structure suitable for
high volume automated manufacturing in comparison
with the distributed winding [2].

The motors with concentrated windings usually have
low winding factors, and so have a low back
electromotive force (BEMF). However winding factors
can be increased in accordance with pole-slot
combinations.

The winding factors also have influence upon d-g axes
inductance. BEMF and d-q axes inductance which are
important design parameters determine on constant
torque region and constant power operation. Therefore
winding factors in accordance with pole-siot
combinations are very important factors.

The aim of this paper is to investigate design
parameters and operating performance of IPMSM with
different winding factors in accordance with pole-slot
combinations.

Il. WINDING FACTOR

IPMSM with concentrated windings usually has slot
number of only 2/3 pole numbers, which results in a poor
fundamental winding factor of 0.866. This can be
compared to the ideal winding factor of one, which can
easily be acquired using distributed windings [2].
However, by choosing better pole-slot combinations, the
winding factor can be substantially increased.

Table | shows the results of winding factors from 4
poles to 16 poles and from 6 slots to 24 slots.

TABLE|
WINDING FACTOR

SIOPtOIe 4 6 8 10 12 14 16
6 | 0.866 0.866 | 0.500 0.500 | 0.866
9 | 0617 | 0.866 | 0.945 | 0.945 | 0.866 | 0.617 | 0.328
12 0.866 | 0.933 0.933 | 0.866
15 0.711 | 0.866 0.951 | 0.951
18 0.735 | 0.866 | 0.901 | 0.945
21 0.866 | 0.891
24 0.760 | 0.866




I1l. THE COMPARISON OF DESIGN PARAMETERS

(a)16pole 15slots

(b)16pole 18slots
Fig. 1. Three motor models.

(c)16poles 24slots

In order to compare parameters of motor with different
winding factors, three motor models are chosen and
analyzed. In this paper three models are selected as
shown in Fig.1. Fig.1 (a), (b) and (c) are 16poles 15slots,
16poles 18slots and 16poles 24slots models which are
defined as modell, model2 and model3. Their winding
factors are 0.866, 0.945 and 0.951 respectively. Finite
Element Method (FEM) is used to calculate some
parameters such as line-line BEMF, Total Harmonic
Distortion (THD), cogging torque, saliency ratio. Having
the same rotor structure, PM volume and fill-factor, the
ratios of tooth width and yoke width in the three models
are 1.86, 1.67 and 1.73 respectively.

A. Back EMF, THD, Cogging Torque

The Fig. 2 and Table Il show line-line BEMF of
modell, 2 and 3. Among three models, line-line BEMF of
modell is the largest and the most sinusoidal. Therefore
THD of modell is the lowest.

Cogging torque of three models is compared as shown
in Fig. 3 and Table Il. It is obvious that modell has the
lowest cogging torque. The line-line BEMF and cogging
torque peak-peak value of modell are chosen as the
standard. And then values of the other two models are
normalized.
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Fig. 2 The comparison of line-line Back EMF.
TABLE Il
LINE-LINE BACK EMF, THD, COGGING TORQUE
c Model Modell | Model2 | Model3
ontents
Line-Line Back EMF(Normalized) 1 0.944 0.865
Winding Factor 0.951 0.945 0.866

THD(%) 0.71 3.28 9.2

Cogging Torque

peak-peak(Normalized) 1 2.27

55.27
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(c) model3
Fig. 3 Cogging torque of three models.

B. Torque and Torque ripple

Torque of IPMSM in normal operation is expressed in
d-q coordinates as shown in equation (1). Torque of
IPMSM is composed of magnetic torque and reluctance
torque.

T= Pn{‘//aiq +(Ly - Lq)ld iq}

1
:Pn{z//aiacosﬁ+%(Lq—Ld)lgsinZﬂ} @

where B, is pole pair number, v, =+3/2y; , vy is
peak armature flux linkage due to permanent magnets,
ig,1q are d-q components of armature current, Ly, L, are

inductance along d-q axes, Ia=\/§Ie , lg is effective
value of armature current, g is lead angle of current
vector from q axis.

In order to compare torque and torque ripple of



modell, 2 and 3 with same current, the lead angle of
current vector from g axis at the maximum torque must
be checked. And the values of three models are 16°, 16°
and 24°. Also the torque is calculated at =0 in order

to confirm magnetic torque. The reluctance torque can be
calculated by subtracting magnetic torque form maximum
torque.

Fig. 4 and Table 11l show magnetic torque, reluctance
torque, S at maximum torque, average torque and torque

ripple. These parameters values of modell are chosen as
standard. And then values of the other two models are
normalized. The results of average torque are same values
but torque ripple and reluctance torque of model3 are
largest. On the other hand, magnetic torque of model3 is
lowest because Line-line BEMF of model3 is lowest.
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Fig. 4. Torque analysis.
TABLE 111
THE RESULTS OF TORQUE
Model
Contents Modell Model2 Model3
Magnetic Torque
(Normalized) ! 0.924 0.860
Reluctance Torque
(Normalized) L 281 6.52
F atthe maximum
o 16 16 24
torque ()
Average torque
(Normalized) ! 0.958 0.963
Torque ripple (%) 6.3 5.02 8.3

C. D-gaxesinductance and Saliency ratio

Since IPMSM has permanent magnet embedded in the
rotor, it has a difference of d-q axes inductance. In case of
saliency ratio which is defined as L¢/Lg is increased,
reluctance torque will be increased. Fig. 5 (a), (b) and (c)
show d-q axes inductance and saliency ratio of three

models which are calculated from £ =10° to s =80°.

The d axis inductance increases in order of model3,
model2 and modell, and then the g axis inductance
increases in order of model2, model3 and modell.
Saliency ratio of Model3 is the largest due to the lowest d
axis inductance. Therefore reluctance torque of modell is
the lowest as shown in Table Il1.
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IV. OPERATING PERFORMANCE

Voltage equation of IPMSM in normal operation is
expressed in d-g coordinates as shown in equation (2).

Vg | _ Ra+pLy  —ol ig .\ 0 ?
Vq a)Ld Ra+qu iq DY,

Where ig,i, are d-q components of armature current,

Vg4,V are d-q components of armature voltage,

g
wa=+312y¢, vy is peak armature flux linkage due to
permanent magnets, R, is armature resistance, Ly, L, are

inductance along d-q axes, p=d/dt.

Various methods of current vector control have been
proposed using the above d-q model. Since IPMSM is fed
via inverter, the following limitations on armature current
and terminal voltage must be considered.

la = yi2 +i2 <l ?)
V, = VG +V¢ <V (4)

Where 1, and V,, are ceiling values of current and
voltage [1].

When maximum power control is executed, constant
power operation region is determined by machine
parameters, and pattern of speed-power characteristic is
known to depend on w4 min

Ydamin =¥a — Lalam 5)

Wqmin 1S the difference between flux linkage caused
by permanent magnets, and maximum negative flux
linkage caused by armature reaction along d-axis, which
corresponds to minimum flux linkage along d-axis [3-4].

For w4 min > 0, there is an output limit as follows.

V, \Y
o, = om _ _Vom (6)
Ya—Lilam  ¥amin
Modle3 odell
d-axis < ~ ? e
Iam
Model2

Fig. 6. &,/L4 of the three models.

The more w4 nin,» the larger the maximum torque is,

but at the same time, constant power operation region
becomes narrow. On the other hand, 4 i, <0, there is

no operating limit theoretically, and the less the absolute
value of Wy min» the larger is the output. Thus, vy min =0

is the ideal condition to obtain very wide range of
constant power [1].
As equation (5), v, /Ly value is 1, in the case of

Wamin =0. The w, /Ly values of the three models are
lower than 1, as shown in the Fig. 6. Therefore, three

models are no operating limit at high-speed region. The
Wamin value of modell is the lowest because d axis

inductance of Modell is the lowest.

V. CONCLUSIONS

The results of design parameters of three models
which have different winding factors show that design
parameters, such as line-line BEMF, THD and cogging
torque, of model3 are the best. However saliency ratio of
model3 is the lowest.

The results of w,/Ly values in the three models,

which determines the constant torque region and the
constant power region satisfy the power at the high-speed
because the w,/Ly value of these models is lower

than I, .

As mentioned above the results of design parameters
and operating performance of model3 which has the
largest winding factor are the best. Therefore choose of
pole-slot combinations is important at initial design.
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