No.276

Torgue ripple reduction design of Multi-layer
Interior Permanent Magnet Synchronous Motor
by using Response Surface Methodology

Liang Fang, Soon-O Kwon. Peng Zhang, Jung-Pyo Hong, Senior Member IEEE

Abstract—In this paper, multi-layer interior permanent
magnet design is proposed for the torque ripple reduction design
in an conventional single layer interior permanent magnet
synchronous motor(IPMSM). With the help of optimization
analysis in response surface methodology(RSM), the reduction of
the torque ripple in the IPMSM multi-layer design is achieved by
improving the characteristics of the Total harmonic
distortion(THD)of the back e.m.f and the cogging torque. The
validity of multi-layer IPM design for reducing the torque ripple
of the IPMSM is well proved by finite element analysis results
comparison between the prototype single layer IPMSM and the
multi-layer designed IPMSM model.

Index Terms—multi-layer design, Torque ripple reduction,
RSM, THD of Back e.m.f, Cogging torque, FEA.

I. INTRODUCTION

N recent years, interior permanent magnet synchronous

machines(IPMSM) have been widely used in public welfare
and the industrial field for their many advantages, such as high
torque density, high efficiency and high quantity output[1].

On the other hand, the IPM machines have significant torque
ripple production, which causes serious operating noise and
vibration. For getting a satisfied output torque performance, the
torque ripple should be reduced. There are many kinds of
design approach presented in the literature for reducing the
torque ripple. In this paper, multi-layer IPM design is
introduced as the approach of torque ripple reduction
design[2],[3].

Single layer IPM synchronous machines as the simplest IPM
design, were the first to be implemented and put into
production[4]. With the development of IPMSM, multi-layer
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IPM design attracts more and more interests. Compare with the
single layer designs, multi-layer IPM designs can effectively
improve the machines performance further.

Firstly, a single layer IPMSM applied for household
air-condition used is introduced as the prototype model. The
quite important characteristic of this IPMSM is that it should
run quietly, low noise and vibration. Correspondingly, the
performance of the output torque must have low torque ripple.

As we know, the torque ripple is caused by the construction
of the magnetic circuit of a machine mainly from[5]:

a) Distortion of the sinusoidal distribution of the magnetic

flux in the air gap;

b) CT effect, i.e., interaction between the rotor magnetic
flux and variable permeance of the geometry of stator
slots;

c) Difference of permeances between the d-axis and
g-axis.

In this paper the torque ripple reduction with the multi-layer
IPM design is achieved through the Total harmonic
distortion(THD) of the back e.m.f (called back_e.m.f THD for
common) and cogging torque(CT) improvement. Both of them
have obvious effect on the toque ripple pulsation. At the same
time, the quantity of the output performance can be ensured.

With the help of Design of Experiment(DOE) and Response
Surface Methodology(RSM) analysis, the optimization of the
characteristics both the back e.m.f THD and CT can be easily
investigated. The finite element method(FEM) is used for
analyzing the characteristics of the IPMSM in this paper.

Il. MODEL ANALYSIS AND DESIGN

A. Prototype IPMSM Model

The existing prototype IPMSM maodel is presented in Fig. 1.
It has 4-pole and 6-slot, with a single PM layer buried inside the
rotor part for each pole.

Fig. 1 Prototype single layer IPMSM model
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B. Prototype IPMSM Characteristic Analysis

Firstly, the concerned characteristics for optimization
analysis of the prototype IPMSM model are analyzed by the
FEM calculation. The torque ripple of the prototype IPMSM
model achieves 25.34%, with the characteristics of back e.m.f
THD (9.44%) and CT (peak-to-peak value is 1.374 Nm), which
can be found in the Fig. 10 and Fig, 11. This prototype IPMSM
has serious noise and vibration. In order to overcome this
problem, the torque ripple should be reduced without
destroying the output performance. Therefore, the motor
characteristics of back e.m.f THD and CT are chosen for torque
ripple reduction design.

I1l. DOUBLE LAYER IPMSM DESIGN

A. Design of Experiment (DOE)

In the multi-layer IPM design, more design variables are
created in the nature of things. In this multi-layer IPM design,
double layer IPM construction is chosen for the torque ripple
reduction because of the considerations such as the simplicity
for manufacturing, the easiness of inserting PM into the rotor
core and the mechanical robustness.

The design variables of double layer IPMSM model are
defined as the following Fig. 2 (a) and (b) show. There exits
two PM layers each pole in the core, and a pair of flux barriers
each PM layer. Therefore, the angles of each flux barrier pairs
(o, B) are selected. And, the relative division of these 2 layers of
buried PM is considered by taking the variable (y), which is
defined as the angle of the each layer tip connected line, when
the gap between the two layers is fixed at 5(mm) for rotor
strength consideration. In the DOE design, all of these three
design variables (a, S, y) are investigated in term of angle
among the range of [30°~ 60°].

@ ' )
Fig. 2 double layer IPM design variables in the rotor part: (a) flux barrier angle
(a, B); (b) PM layer tip line angle ().

Table.1 DOE Full factorial Design Array

No. a B /2 cT THD

1 45 45 45 0.29400 | 0.10208
2 30 30 60 0.30194 | 0.03753
3 60 30 60 0.59309 | 0.06145
4 60 30 30 0.30844 | 0.21805
5 60 60 30 0.60607 | 0.11528
6 30 60 60 0.23140 | 0.07328
7 60 60 60 0.29450 | 0.08736
8 30 30 30 0.44155 | 0.18451
9 30 60 30 0.64790 | 0.09777
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Fig. 3 Standardized Effects : (a) Back e.m.f THD and (b) Cogging torque (CT)
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Fig. 5 Cogging torque Effect analysis : (a) a main effect; (b) [, y] main effect;
() [B, ] interaction effect

From the Fig. 3 Effect Pareto charts analysis, the design
variables (5, y) have greater effect on both back e.m.f THD and
CT characteristics, therefore (5, y) are selected for further
investigation later. On the other hand, the design variable « is
excluded from the main design variable analysis.

In the DOE analysis, the design variables are investigated
from both main effect and interaction effects[6], as the Fig. 4
and Fig. 5 display. According to the variation of back e.m.f
THD and CT plots, the fittest values can be found primarily.

From the experimental research, compare with the CT effect
on the torque ripple, back e.m.f THD has a relative larger ripple
pulsation, therefore the THD characteristic should be firstly
considered in the design variable effects analysis. The main
design variables (8, y) are analyzed from the (b) and (c) of the
Fig. 4. When (5=30°, y=60°), the minimum of back e.m.f THD
can be obtained. Also, from Fig. 5 (b), design variable y shows
great effect on the reduction of CT. When the (y=60°), the CT
can be obviously reduced. At the same time, the design variable
() should be fixed at (a=30°) for getting the minimum values
of both back e.m.f THD and CT from the Fig. 4(a) and Fig. 5(a)
analysis. Therefore, in the DOE part, the main design variables
(B8, y) and the anticipatory optimization design area (a=30°,
£=30°, y=60°) can be concluded.

B. Response Surface Methodology (RSM)

RSM is a collection of statistical and mathematical
techniques used for developing, improving and optimizing
process[6]. According to the DOE analysis, the selected main
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design variables (5, y) are investigated near the pre-determined
point (a=30°, f=30° y=60°). The experimental array of the
RSM is listed in Table. 2, and the characteristics of THD and
CT with each combination of design variables are calculated by
FEM.

Table. 2 Experimental Array of RSM
/4 )il CT THD

60.0000 | 30.0000 | 0.51094 | 0.05132
45.8579 | 30.0000 | 0.52431 | 0.06875
60.0000 | 30.0000 | 0.51094 | 0.05132
50.0000 | 40.0000 | 0.44898 | 0.08510
60.0000 | 15.8579 | 0.52431 | 0.06875
70.0000 | 20.0000 | 0.24660 | 0.05113
60.0000 | 44.1421 | 0.38151 | 0.05700
60.0000 | 30.0000 | 0.51094 | 0.05132
74.1421 | 30.0000 | 0.17647 | 0.04929
60.0000 | 30.0000 | 0.51094 | 0.05132
50.0000 | 20.0000 | 0.52327 | 0.10488
70.0000 | 40.0000 | 0.20090 | 0.05404
60.0000 | 30.0000 | 0.51094 | 0.05132
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Fig. 8 Optimal design variables and responses analysis

Then, the variation of the characteristics back_e.m.f THD
and CT can be observed from the response surfaces as the Fig. 6
and Fig. 7 show. In the response surfaces, the optimal region
can be directly determined. But the optimal result each
response is not achieved with the same design variables.
Therefore, the interaction responses are analyzed in the Fig. 10
and the optimal design variables are obtained properly.

IV. RESULT COMPARISON

In the RSM analysis, the improved characteristics of the
optimal designed double layer IPMSM are obtained
theoretically, which gave the results that back_e.m.f THD
(3.33(%) and CT (Peak.=0.2677(Nm)), when (a=30°, f=31.4°,
y=68.0°). But on the other hand, RSM is a kind of analytical
method in essence, with inevitable error existing in the obtained
results[7]. Therefore, it is necessary that the double layer
designed IPMSM model is established with the design
variables combination [a=30° p=31.4°, y=68°], and the
characteristics of the new designed model are preciously
calculated by FEM again.

The redesigned double layer IPMSM model is built in Fig. 9,
with the determined design variables from RSM. And then, the
characteristics of this new designed IPMSM model are
calculated by the FEM. In the Fig. 10 and Fig. 11, the back
e.n.f THD and CT plots of the double layer IPMSM are
compared with the prototype model. It can be found, that the
THD value is decreased from 9.44% to 3.47%, and the CT
values are decreased from 1.374(Nm) to 0.367(Nm). Finally,
the torque ripple of the output is compared in Fig. 12. After the
optimal design, the torque ripple is decreased from 25.34% to
17.55%, nearly 30% improvement, and with a certain increase
of average output torque.

Fig. 9 Optimal redesigned double layer IPMSM model
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CONCLUSION

In this paper, the torque ripple reduction design of the
prototype single layer IPMSM is well achieved through the
double layer IPM design in the rotor part. With the help of RSM
analysis, the optimal redesigned double layer IPM rotor
structure was built, with the obvious improvement of back
em.f THD and CT characteristics. In the FEM results
comparison, the torque ripple of the new designed double layer
IPMSM model decreased 30% compared to the prototype
model. Therefore, it is well verified that by multi-layer IPM
design, the IPMSM performance can be improved effectively.
With the present optimization method, other motor
performance also can be concerned similarly.
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