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Optimal Design to reduce Acoustic Noise
In Interior Permanent Magnet Motor
using Response Surface Methodology

Sang-Ho Lee, Suk-Hee Lee, Jung-Pyo Hong, Sang-Moon Hwang, Ji-Young Lee, and Young-Kyoun Kim

Abstract—This paper presents methods to reduce acoustic noise
in interior permanent magnet (IPM) motor. Mechanical and
magnetic sources are considered to reduce noise of the machine,
and structural and electromagnetic designs are performed. In the
structural design to reduce mechanical source, the resonant
frequency of stator are moved to higher frequency for
enhancement of stiffness and structural stability is also enhanced.
Then, in the electromagnetic design to reduce magnetic source,
the harmonic amplitude of normal force which affects stator pole
is firstly reduced by using objective function of response surface
methodology (RSM). In addition, second optimization for
reduction of torque ripple is performed. The validity of the design
procedures and objective function is confirmed with their
calculated and experimental results.

Index Terms— Acoustic noise, concentrated winding, design of
experiment, interior permanent magnet, objective function,
resonant frequency, stiffness, response surface methodology.

. INTRODUCTION

NTERIOR permanent magnet (IPM) motors have many
advantages compared with surface permanent magnet (SPM)
motors because IPM motors generate both magnetic torque and
reluctance torque. However, regarding the noise and vibration,
the IPM motors have more sources than SPM motors [1].

The harmonic of the forces which are divided into normal or
tangential components is induced and the coincidence of the
resonant frequencies of stator with any of the harmonic
components of magnetic forces, especially normal force, will
cause resonance resulting in vibration and noise [2].
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As one of the method of magnetic force calculation,
equivalent magnetizing current (EMC) method uses
magnetizing current which exists on element boundary and it
can directly calculate the electromagnetic force which affects
the surface of structure [3]. EMC only distributes on the
element surface of different material because the interior
magnetizing current in core is cancelled. The normal force is
expressed as

1 1
fn = E(HmBm - HuBu)_

E(anan_thBm) (1)

where B,,,B, ,H,, , and H,are the components in the air,
B,,,B,,H,, ,and H,,are the components in the core.

In this paper, optimal design performs to reduce acoustic
noise in IPM motor through structural and electromagnetic
design. Especially, response surface methodology (RSM) is
firstly applied in electromagnetic design and second
optimization to reduce torque ripple is performed [4]-[5].
Accordingly, the validity of the design methodology to reduce
noise is verified by comparison with calculated and
experimental results.

Il. ANALYSIS OF PROTOTYPE MODEL

As the brushless DC (BLDC) IPM motor with concentrated
windings, specification of prototype is shown in Table I. The
switch-on time is lagged behind 30 ° in electrical degree for
back electromotive force (BEMF) in the no-load.

The configuration of noise experiment is shown as Fig. 1.
Noise experiment is performed in the anechoic room where
background noise is 41.0 dBA and measured 1m away from the
motor by microphone. As a load of IPM motor, generator
coupled with IPM motor produces the active power at the
resistance.

TABLE I
SPECIFICATIONS OF PROTOTYPE
Contents Values
Number of poles slots 4/6
Stack length (mm) 80.0
Rated current (Arms) 13.0
Number of turns per phase (turns) 65
Rated speed (rpm) 3000
Rated torque (Nm) 8.0
PWM frequency (kHz) 4.0




> No. 546 <

—
cooo ooooo

FFT Analyzer

Microphone

Driver

Fig. 1. Configuration of noise experiment.
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Fig. 2. Noise spectra of prototype (@ 3000 rpm, 8 Nm)
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Fig. 3. The result of modal test for stator according to assembly condition.
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TABLE Il
MECHANICAL MATERIAL PROPERTY OF STATOR

- Mass density
7680 kg/m® 0.3

- L

Fig. 4. Resonance mode m = 1 shape of stator by modal analysis (@ 1.5 kHz).

Elastic modulus
200 GPa

Poisson’s ratio

Values

A. Noise experiment

The result of noise experiment prototype under 3000 rpm
and 8 Nm is shown in Fig. 2. The noise spectra occur mostly
four times of driving frequency and it corresponds with the
harmonic component of normal force which affects stator pole.

The tendency of noise spectra in prototype has a great
notation that the main noise between 2.0 and 2.8 kHz are
generated by resonance and noise around 4 kHz are induced by
pulse width modules (PWM) frequency.

B. Modal test and analysis

To verify noise source, modal test is performed for the
element of motor and the result of modal test for stator is shown
in Fig. 3. The frequencies of circumferential mode m =1 of (A),
(B), and (C) by assembly condition are 1.5, 1.8, and 2.6 kHz,
respectively. The resonant frequency of stator is moved to
higher frequency due to stiffness by assembly condition.
Accordingly, the increase in resonant frequency of stator by
assembly condition should be considered in noise experiment.

Considering mechanical material property which is
expressed as table Il, Fig. 4 shows resonance mode shape of
circumferential mode m = 1 at 1.5 kHz obtained from the 2D
FEM Ansys. And then, noise between 2.0 and 2.8 kHz mainly
generates oval mode.

I1l. DESIGN METHODOLOGY

Design methodology to reduce acoustic noise is largely
classified into two parts. First, structural design focuses on the
reduction of the vibration by enhancing stiffness of stator. The
quantities of vibration by changing the dimension of design
variables are expressed by sound pressure levels (SPLs) which
is calculated by using boundary element method (BEM) and
then new stator shape is decided. Second, electromagnetic
design concentrates on the harmonic reduction of normal force
which is calculated by EMC.

A. Structural design

According to the change of each design variables, the
variation of resonant frequency depending on the stator is
analyzed. Link thickness (LT) and yoke thickness (YT) are
main effective design variables to increase the resonant
frequency in the design variables.

When the exciting force on the center of tooth surface is
equal to 1 N, Fig. 5 shows the resonant frequency, vibration,
and noise analysis results compared with prototype by
changing LT and YT, respectively. According to the increase of
the resonant frequency, quantities of vibration and noise are
decreased because the kinetic energy of the air layer on the
stator surface is the vibration energy of the stator [6]. Therefore,
the reduction of vibration through the increase in LT and YT is
necessary.
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Fig. 5. Resonant frequency, vibration, and noise by changing LT and YT.
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Fig. 6. The result of structural design.

Fig. 6 shows the shape and dimension, which is the result of
structural design, compared with prototype when the constraint
condition depends on possibility of windings. The black area
means the expansion of core compared with prototype. The
frequency of circumferential mode m = 1 of stator, it is the same
condition such as (A) in Fig. 3, changes from 1.5 to 1.8 kHz.
When the variation of mass by increasing the quantities of core
compared with prototype is ignored, resonant frequency of
stator is moved to higher frequency by the increase in stiffness
and quantities of vibration which affects noise can be
decreased.

Accordingly, structural design to reduce the acoustic noise in
electric machines focuses on enhancement of the structural
stiffness using LT and YT.

B. Electromagnetic design

Using the result of structural design, electromagnetic design
to find optimal point reducing the harmonic of normal force
which affects stator pole by RSM is firstly progressed. In
addition, optimization to reduce torque ripple is secondly
performed.

The harmonic of normal force is reduced by using an optimal
design method. In the optimal design using RSM, objective
functions and constraint condition are expressed as

Fn
Objective function : 10log > 10%° 2
Subject to : Average torque > 8.0 Nm 3)
Where F, is the harmonic of normal force considering

A-weighting in frequency weighting curves and weighting
factor at the resonant frequency bands of stator [7].
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Fig. 7. Design procedures in electromagnetic design.

The design procedures of electromagnetic design are
presented in Fig. 7. To consider operating condition of motor,
parameters such as BEMF and inductance are calculated
through FEA. In addition, current considering PWM frequency
is calculated by duty ratio. Switch-on section is an important
factor for distribution and harmonic components of normal
force which affects stator pole. Yet, to analyze the results of
objective function by design variables, the initial point of
switch-on section, it lags behind 10 ° in electrical degree for
BEMF in the no-load, is fixed.

Fig. 8 shows the design variables, which are bridge width
(BW), pole arc (PA), slot open (SO), and tooth height (TH).
Full factorial design (FFD), which is required experiments 17
including central point, is used to find the main factors and
design areas are shown in Table Ill. Main and interaction
effects of BW, PA, and SO are significantly expressed from the
result of DOE. Among those design variables, effective degree
of PA and SO is higher than BW, therefore, PA and SO are
firstly selected to reduce the harmonic of normal force in RSM.

Central composite design (CCD), which is required to
conduct 9 experiments, is used to the response of each factor
and design area of PA and SO based on the result of DOE
shown in Table I11. Initial optimal point considering constraint
condition is shown in Fig. 9 and then PA and SO are 4.3 mm
and 72 °, respectively.

Fig. 8. Design variables in electromagnetic design.

TABLE III.
DESIGN VAIRALBES AND AREA IN ELECTROMAGNETIC DESIGN

Design Coded values

. Unit
variables -1.682 1 0 1 1.682
BW mm - 0.5 25 4.5
SO mm - 4.0 55 7.0
DOE TH mm - 15 25 35
PA ° - 45.0 65.0 75.0 -
RSM SO mm 3.89 435 5.45 6.55 7.00
PA ° 50.08 53.4 61.4 69.4 72.71
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Using the initial optimal point, second optimization to
reduce torque ripple by changing BW is performed and then the
values of objective function are also observed.

In the results by changing BW, the distribution of normal
force which affects stator pole and torque of model having
similar average torque compared with prototype are expressed
in Fig. 10. Although the distribution of normal force is similar,
torque ripple is decreased from 68.0 to 54.0 % and average
torque is increased from 7.5 to 8.1 Nm. Therefore, BW is
chosen as 2.5 mm in second optimization.

IV. RESULTS AND DISSCUSION

Fig. 11 and 12 show the comparisons of characteristics
between prototype and optimized model (OPT), respectively.
The distribution of normal force of OPT compared with
prototype is more sinusoidal and peak values is lower than
prototype but torque ripple of OPT is similar to prototype.
Although the harmonic of torque ripple is lower than prototype,
the harmonic amplitude of torque ripple generated by tangential
force is very smaller than normal force. Accordingly, OPT only
reduces the harmonic of normal force using the values of
objective function.

Fig. 13 shows the noise experiment result measured by 1/3
octave band at the 3000 rpm and 8 Nm. Total SPLs of OPT
compared with prototype are entirely reduced and the values of
prototype and OPT are 76.5 and 71.4 dBA, respectively. The
noise of prototype around PWM frequency is higher than OPT
because inductance of OPT is higher than prototype due to the
reduction of magnetic saturation by increasing pole arc.

V. CONCLUSION

This paper deals with optimal design to reduce acoustic noise
in IPM motor using RSM. Acoustic noise of optimized model
using proposed design procedures and objective function is
reduced compared with prototype.

The structural design should focus on vibration reduction by
increasing stiffness and stability of stator. In addition, the
electromagnetic design should pay more attention to the
harmonic reduction of normal force than one of tangential force
in electric machine with high-power density such as IPM
motor.
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