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Comparison of IPMSM with distributed and
concentrated windings

Soon-O Kwon, Sung-1l Kim, Jung-Pyo Hong

Abstract—Performance comparison of IPMSMs with

distributed and concentrated windings is presented in this paper.

Two IPMSMs are designed with identical rotor dimensions, air
gap length, series turn number, stator outer radius, and axial
length except winding configuration. Basic parameters and
machine performance, such as inductances, resistances, back
emf, output torque, and efficiency, are compared.

Index Terms—IPMSM, Concentrated windings, Distributed
windings

I. INTRODUCTION

he application of IPMSM(Interior Permanent Magnet
Synchronous Motor) is extending due to high power
density and wide operating speed range with the help of
reluctance torque and field weakening control. In order to
maximize the advantage of its high power density, distributed
windings is the reasonable choices for windings designs,
because almost unit winding factor can be achieved. However,
PM machines with distributed windings have several
disadvantages such as difficulty in winding automation, long
end windings, and larger copper loss than concentrated
windings, etc. Comparing to distributed windings, concentrated
windings enables easy windings automation and have short end
windings, smaller copper loss, and require smaller space than
distributed windings. However, winding factor of concentrated
windings is generally smaller than distributed windings [1].
To improve output torque of PM machines with concentrated
windings, many researches dealing with improving output
torque of PM machines are undergoing. In design aspects, to
improve the output torque, unequal tooth width of stator and
appropriate choice of slot and pole number are introduced and
the researches achieved improvement of output power of PM
machines with concentrated windings or gives the direction in
initial design stage [1-4]. However, the researches are
concerned only with SPM motor with concentrated windings.
Unlike to the SPM motors, inductances vary with rotor position
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and current phase angle in IPMSM, and this variation have
significant effects on motor performances.

The purpose of this paper is to study the effects on the
characteristics of IPMSM when distributed winding is designed
to concentrated windings. From basic parameter to output
characteristics, both motors are closely compared. Initially,
DIS(IPMSM with distributed windings) for high speed
application is designed, then CON(IPMSM with concentrated
windings) is designed with identical rotor part of DIS. From the
basic motor parameters and characteristics, such as inductances,
resistances, back emf, output torque, and efficiency, are
compared.

Il. ANALYSIS MODEL

A.  Specifications and structure

Fig. 1 show the models studied in this paper. Both DIS and
CON are designed for high speed application. (a) is distributed
windings model with 4poles and 24slots and (b) is concentrated
windings model with 4 poles and 6slots. The major geometric
parameters of DIS and CON are identical; axial length, air gap
length, rotor outer radius, stator outer radius, etc. and the only
difference is the windings structure. Therefore, the effect of
windings configuration on the motor performance can be easily
observed.

Generally, concentrated windings machines have higher
THD of back emf than distributed windings, therefore, CON is
designed to have minimized THD of back emf by teeth tip and
slot open width design.

Fig. 1. Configuration of designed model

Fig. 2 shows the torque and power versus speed
characteristics of both DIS and CON. Until 6,000rpm, constant
torque of 17.5 Nm is maintained and from 6,000rpm to
20,000rpm, 11kW of output power is maintained. In the
constant torque region, maximum torque per ampere control is
considered and maximum efficiency control with field
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weakening is used in the constant power region.

Table | shows specification of the models. By redesigning
windings configuration from distributed windings to
concentrated windings, resistance of CON is lowered with
lower current density. Lower current density could be achieved
due to efficient filling factor of DIS.
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Fig. 2. Output Power characteristics
TABLE |. SPECIFICATION OF IPMSMS
DIS CON
Output power (kW) 11 11
Max. Torque (Nm) 17.5 175
Max. speed(rpm) 20,000 20,000
Number of poles/slots 4/24 4/6
Number of phases 3 3
Series turns 40 40
Number of coils 17 9
Number of parallel
R 1 2
circuit
Resistance (mQ) 45.7 37
Skew angle (°) 15 15

I1l. BASIC THEORY

A. d- q model of IPMSM

For the performance analysis of IPMSM, d-g model is
generally used. Equivalent circuits for IPMSM based on a
synchronous d-g model considering core losses are presented in
Fig. 3. The mathematical model of the equivalent circuits is
given by (1), (2), and (3) considering core loss [5]. By solving
equations (1) ~ (3), characteristics of IPMSM is calculated in
steady state in this paper.

(a) d-axis equivalent circuits

O .
(b) ¢g-axis equivalent circuits
Fig. 3. d-q equivalent circuit
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where, i;and i, are d- and g-axis armature current, i.; and i,
are d- and g-axis iron loss current, v, and v, are d- and g-axis
voltage, R, is armature windings resistance per phase, R, is iron
loss resistance, ¥, is flux linkage by permanent magnet at no
load, L, and L, are d- and g-axis armature self inductance, and
P, is pole pair.

B. Core loss calculation

Fig. 4 shows the procedure of core loss calculation using
core loss data of magnetic material [5]. After calculating total
iron loss, w,,.;, the core loss resistance R. is calculated by (4).

Rc = Vg /Wtutul (4)

where, v, is terminal voltage at no load and speed of core loss is
calculated.
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Fig. 4. Procedure of core loss calculation.
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IV. COMPARISON OF CHARACTERISTICS

A. Comparision of basic characteristics

Flux distribution of DIS and CON at no load are compared in
Fig. 5. CON shows lower flux density in the stator yoke than
DIS, considering identical yoke thickness, that leads to smaller
flux linkage of CON. Therefore, lower back emf and core loss
of are produced.

No load back emfs are shown in Fig. 6. Due to pole/slot
combination and windings configuration, CON shows 86.6 %
of back emf to DIS having almost unit windings factor[1]. Due
to skew effect and THD reduction design, both models show
low THD.

No load core losses are compared in Fig. 7. Due to lower
THD of back emf and flux densities, CON shows lower core
loss at entire speed region.

Generally, distributed windings with large slot numbers
shows lower cogging torque than concentrated windings. In
this study, CON designed to have minimum cogging torque
within limitations, however it has still much higher cogging
torque than DIS as shown in Fig. 8.

In Fig. 9, saliency ratio, L, and L, are compared. To
calculate L, and L,, 2D FEA is used. Flux linkages at no load,
and each current and current phase angle are calculated. From
the comparison, it is found that redesigning distributed
windings to concentrated windings results in decrease of
saliency ratio. Especially, the increase of L, significantly affects
to the decreased saliency ratio, while the effect of decreased L,
is small.

(a) Flux distribution in the yoke and teeth of DIS

o
(=N \

(b) Flux distribution in the yoke and teeth of CON

Fig. 5. Flux density comparison
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Fig. 9. Comparison of inductance and saliency ratio at rated current
(43Arms)

B.  Comparison of output characteristics

When both DIS and CON shows output powers shown in Fig.

2, other characteristics such as current, loss, line to line voltage,
etc. are compared.

Fig. 10 shows current and voltage characteristics. Because
CON has lower back emf and saliency ratio, it needs more
current than DIS to produce required output torque in the
constant torque region. However, when the back emf is
saturated, CON requires less current due to smaller back emf to
weaken.

Core loss and copper loss are shown in Fig. 11. It is found
that currents of CON is higher in the constant torque region,
however, copper loss becomes close to DIS, that is caused by
lower phase resistance of CON.

Resultant efficiencies of both models are shown in Fig. 12.
Due to low copper losses DIS shows higher efficiency in the
constant torque region, but the difference is not significant. In
the constant power region, due to low field weakening current,
CON shows higher efficiency than DIS.

Output torque and ripples at 43Arms are calculated by 2D
FEA and shown in Fig. 13, where maximum torque per ampere
operation is considered. Due to lower back emf saliency ratio,
CON shows lower output torque than DIS at identical input
current. It is notable that maximum torque of CON is about
86.7% of DIS.

Fig. 10.

Fig. 11.
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V. SUMMARY

Characteristics of IPMSMs with distributed
concentrated windings are compared in this paper.

More current is required for concentrated windings than
distributed windings model due to lower back emf and saliency
ratio in constant torque region. The reason for more input
current is that the decrease of magnetic torque and reluctance
torque. Magnetic torque is reduced by decreased windings
factor and the decrease of reluctance torque is caused mainly by
increase of L.

In the constant power region, lower current is required for
concentrated windings due to lower back emf to weaken and
increased d-axis inductance.

Therefore, even though more current is required for
concentrated windings in the constant torque region, copper
loss is close to the distributed windings and less current with
high efficiency is achieved in the field weakening region due to
low back emf and higher d-axis inductance, and it is expected
that concentrated windings is more suitable than distributed
windings when field weakening operation at high speed is used.

Fig.14 shows the fabricated concentrated and distributed
winding IPMSM. Fig. 15 shows back emf comparisons at
1000rpm of analysis and experimental results. Other
characteristics of both motors will be verified in the next study.

and

(c) Rotor
Fig. 14. Fabricated DIS and CON model
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