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Abstract-- This paper proposes an effective design process for 

superconducting motor with a simplified 3D analysis model and an 

optimization algorithm. Response surface methodology (RSM) is used as 

the optimization method in whole design process from selecting main 

design parameters to optimizing them. During the process, the 

simplified 3D analysis model is used to get electric parameters by 3D 

equivalent magnetic circuit network method (EMCN). The utility of this 

method is verified through the comparison of the performances of the 

optimal geometry and those of the initial geometry. 

I. INTRODUCTION

Design of superconducting machines using high 

temperature superconducting (HTS) tapes as field coil has 

been an object of concern for high efficiency and high power 

density. In general cases, there is no magnetic core in both 

stator and rotor in order to contribute to lighter weight, 

remove a signification source of motor noise, and lessen core 

losses, so the magnetic air-gap can be too large to consider 

the flux path as two-dimensional problem [1, 2]. Moreover, 

in designing a superconducting motor, an analytical 

prediction of performances such as output power and 

efficiency is so important that accurate electrical parameters 

should be calculated previously. Accordingly, the authors 

considered three-dimensional (3D) flux path in design 

process with commercial program in [3]. However, in overall 

design process from initial dimension decision to 

optimization, calculating parameters from each detailed 3D 

model can be troublesome or time-consuming.  

Therefore, this paper proposes an effective design process 

for HTS superconducting motor with a simplified 3D 

analysis model and an optimization algorithm. Response 

surface methodology (RSM) [4] is used as the optimization 

method in whole design process from selecting main design 

parameters to optimizing them. During the process, the 

simplified 3D analysis model is used to get electric 

parameters by 3D equivalent magnetic circuit network 

method (EMCN) [5]. The utility of this method is verified 

through the comparison of the performances of the optimal 

geometry and those of the initial geometry. 

II. DESIGN AND ANALYSIS MODEL 

Fig. 1 shows a schematic cross sectional view of the 

superconducting motor which is designed as a HTS 

synchronous motor in the 21st Century Frontier R&D 

Program, Korea. The motor is composed of HTS field 

winding, cold damper shield, air-gap, armature winding made 

by cooper wire, and laminated magnetic shield. The field 

winding consists of racetrack type double pancake coils 

wound with Bi-2223 HTS tapes operated at about 35K.  

Fig. 2 shows the analysis models of 3D EMCN in left side 

and commercial program in right side respectively. The 

simplified analysis model for using 3D EMCN is useful in 

design process because of rapid calculation time, and 

relatively accurate analysis results. Table 1 presents the 

comparison of inductance calculation using 3D EMCN and a 

commercial program. Even though one is simplified model 

and the other is detailed, the calculated inductances are 

almost identical. In the case of coils of which length are 

similar, the error of inductance values are under 5%.  

Fig. 3 shows the axially flux distribution in the middle of 

the armature coil. The radial direction flux density, Br, in the 

end of straight part decreases by 32% in comparison with Br 

in the center part. Accordingly, 3D flux path should be 

considered in design process where the parameters such as 

inductance and EMF relating flux are needed to do reliable 

design. 
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Fig.1. The cross-section view of superconducting motor 
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Fig.2. Analysis model by 3D EMCN (left) vs. real model (right) 
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TABLE I 
THE COMPARISON OF INDUCTANCE CALCULATION

Coil Length (mm) 

Straight-coil part End-coil Part 
Inductance (mH)

3D EMCN 
212.5 

212.5 

50

201

2.91 

3.78 

Flux 3D 
212.5 

212.5 

46

200

2.89 

3.94 

Fig.3. Axially irregular flux distribution in superconducting motor  

with large air-gap

III. DESIGN PROCESS 

Fig. 4 shows the proposed design process with response 

surface methodology. The detail analysis process for 

collection of samples with 3D EMCN in the middle of the 

design process is shown in Fig. 5. 

Several design parameters such as number of slots, number 

of field-turn, axial length of field coil, width of field-pole, etc. 

are investigated in the screen activity. After selecting main 

parameters through the design process, the motor can be 

optimized with a few design parameters which have great 

effects to the characteristics which can improve efficiency 

and power density. 

IV. CONCLUSION 

In this paper, a design process is introduced to design 

superconducting motor having improved efficiency and 

power density. With analysis using a simplified 3D analysis 

model and 3D EMCN, more reliable and rapid design can be 

performed considering unique characteristic of 

superconducting motor such as large air-gap.  
With proposed design process, detail results and 

explanation will be presented and discussed in full paper.

Fig.4. Proposed design process by response surface methodology 

Fig.5. Analysis process for collection of samples by 3D EMCN 
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