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Abstract—Manufacturing tolerances as well as measuring 

errors have a great influence on products designed by 
optimization technique etc. to improve its characteristics and 
reduce the cost. Therefore, tolerance analysis technique is 
required to find the tolerance band of design variables and 
estimate the characteristic distribution of the products. In this 
paper, we introduce Stochastic Response Methodology (SRSM), 
which treated design variables as random ones. Also, we present 
a way of the tolerance analysis from electric viewpoint. A BLDC 
motor is analyzed to verify the application of this method. Finally, 
the validity of this method is confirmed by obtaining statistically 
significant results for torque characteristics of the motor. 

Keywords—optimization; stocastic response surface method; 
tolerance analysis; BLDC motor 

I. INTRODUCTION  
Facing the rising cost of electric energy, the motor users 

and manufactures have begun to pay attention to highly 
efficient motor in an attempt to reduce their costs. These 
requirements are mainly achieved by optimizing motor 
designs. The optimization of the electric machine is believed 
to be the most economical approach to improve the motor 
efficiency and performance. Although the electric motor is 
designed by using optimization algorithm, its performance 
cannot be satisfied as the desired one in certain cases. This 
occurs because the approaches of optimization neglect the 
effects on variation of design variables such as manufacturing 
tolerances. 

The design of the electric machine needs allowance for 
dimensional tolerances due to limitations on the 
manufacturing and measuring precision on every part: for 
example, tolerances occur on stator and rotor punching, frame 
dimensions, bearing clearances, magnetic and electric material 
properties, and so on [1]. In general, the larger tolerance in 
manufacturing processes lead to have an influence on the 
lower cost of manufacturing machines. These dimensional 
tolerances, however, can effect on the electric machine 
performance, such as operating efficiency, reliability, and 
production of vibration. Therefore, the design techniques are 

required to find the tolerance band of design variables in order 
to minimize the cost and satisfy the performance in electric 
machine. Such a tolerance means uncertainty of design 
variables. Therefore, tolerance analysis is inevitably needed, 
considering the uncertainty of design variables. The 
uncertainty of design variables is considered by treating 
design variables as random parameters in electric machine.  

The usual method for tolerance analysis is Monte Carlo 
Simulation. However, the major disadvantage of this method 
is that it requires a great number of computations to have an 
acceptable precision of statistically significant results. The 
number of samples will be very high, with a very large 
computational cost. This paper introduces Stochastic 
Response Surface Methodology (SRSM) to evaluate the 
statistical properties in the electric machine performance. The 
SRSM approximates the output function by using a 
polynomial fitting and samples the approximation to calculate 
specific statistical quantities of outputs [2]. These quantities of 
both input and output uncertainties are needed to define 
patterns of their variability and then are used to achieve the 
tolerance analysis in electric machines. 

As an example, the tolerance analysis using SRSM is 
applied to design for a BLDC motor from the electric point of 
view. The aim of the design is to reduce the torque ripple of 
the BLDC motor based on conventional Response surface 
Methodology (RSM) and accomplish the tolerance analysis of 
design parameters to satisfy variation band of outputs. 

II. CONCEPTS AND STATISTICAL FITTING METHOD 

A. Concept of Response Surface Methodology  

The RSM seeks to find the relationship between design 
variable and response through statistical fitting method. A 
polynomial approximation model is commonly used for a 
second-order fitted response and can be written as follow [3]: 
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where, β is regression coefficients, ε denotes the random error. 
The least squares method is used to estimate unknown 
coefficients. Matrix notations of the fitted coefficients and the 
fitted response model should be 
 

-1= (X X) X u′ ′β  (2) 

u = X β  (3) 
 

B. Concept of Stochastic Response Surface Methodology 

The SRSM can be illustrated as an extension of the 
deterministic Response Surface Methodology (RSM), and 
then the major difference being that in the former the input 
variables are random variables while in the latter the input 
variables are deterministic variables [2]. 

The first step in the implementation of the SRSM is to 
represent all input parameters in terms of random variables. 
Random variables with normal distributions, N(0,1), are 
frequently selected to represent input uncertainties because it 
is easy to deal with a mathematical function of these random 
variables. In this paper these random variables are mentioned 
to as standard random variables. When the random input 
variables are independent, the uncertainty in the i-th input of 
the model, xi, is transposed properly as a function of the i-th 
standard random variables, ξi, by applying an appropriate 
transformation according to the following Table I. 

In second step of the SRSM, a relationship of the 
uncertainty between the outputs and inputs is addressed by the 
series expansion of standard normal variables in terms of 
Hermite polynomials. Therefore, the output can be 
approximated by an expansion known as polynomial chaos 
expansion [2], [4]. The explain is as follows: 
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where y is output of the model, a’s are unknown coefficients 
to be estimated, Γp(ξi) is Hermite polynomials of degree p, 
written as follows: 

TABLE I. TRANSFORMATION FOR SOME OF THE COMMON 
DISTRIBUTIONS AS STANDARD RANDOM VARIABLE 

Description pattern of input 
variables Transformation 

Normal ( ), µ σ  +µ σ ξ

Lognormal ( ), µ σ  ( )+
e

µ σ ξ  

Gamma (a b),  3a b ( (1 /9a ) 1 (1 / 9 a ) )+ −ξ  

* µ : mean value, σ : standard deviation, ξ : normal distribution (0,1). 

p

p

p
p

p ( , , ) (-1)
−∂Γ
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1

1 1

2 2
i i

i i

= e e…
…

Τ Τξ ξ ξ ξ
ξ ξ

ξ ξ
 (5) 

 
where ξ  is the vector of p standard random variables {ξik}p

iik =1, 
that are used for describing the uncertainty in the input. The 
Hermite polynomials on {ξi}n i =1.are random variables, because 
they are functions of the random variables. Furthermore, the 
Hermite polynomials defined on {ξi}n i =1 are orthogonal with 
respect to an inner product defined as the expectation of the 
product of two random variables. 

 

p q p qE( ) 0 ifΓ Γ Γ ≠ Γ=  (6) 

 
Therefore, a model output y with the uncertainty can be 
represented as a second order polynomial approximation and 
as follows: 

 

2
0 ( ) ( )

≠
+ + +∑ ∑ ∑

n n n
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y = a a a - 1 aξ ξ ξ ξ  (7) 

 
where n is the number of standard random variables used to 
represent the uncertainty input in the model and the 
coefficients a is the unknown coefficients to be estimated.  

The third step is to estimate parameters in the functional 
approximation of outputs. The unknown coefficients in the 
polynomial chaos expression can be estimated through 
regression method based on some sample points. And the 
following sections describe the statistical properties of the 
outputs as last step in SRSM. 

III. BASIC STATISTICS FOR TOLERANCE ANALYSIS 
Uncertainty of design variables can affect a performance 

of electric machines. Accordingly, it may cause variation in 
the performance. It is necessary for tolerance analysis of 
design variables to estimate a variation band of the output 
according to uncertainty of that. The variation band and 
uncertainty of design variables, with assuming the distribution 
of a normal distribution, is shown in Fig. 1. In this 
symmetrical distribution, the tolerance band of design 
variables is easy to quantify in terms of the percentage of the 
area that will occur between one, two and three standard 
deviation from the mean µ as follows [5]: 

 

( )∆ ±x = n n = 1, 2, 3, σ  (8) 
 

Modeling variation of outputs according to tolerance of design 
variables is made by the SRSM. From a set of N samples, the 
basic moments of the distribution of an output yi can be 
calculated as follows: 

1E { } = ∑i

N

y i i , j
j=1

 = y y
N

µ  (9) 
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Tolerance (+∆xi)Tolerance (-∆xi)

µxi - 3σxi µxi + 3σxiµxi

Tolerance (+∆xi)Tolerance (-∆xi)

µxi - 3σxi µxi + 3σxiµxi  

Fig. 1. Tolrerance band of design variables  

2 2 21E{( ) } ( )− = −
− ∑i i i

N

y i y i , j y
j=1

 = y y
N 1

σ µ µ  (10) 

2
i iy y =σ σ  (11) 

 
where, µyi is a mean, σ2

y  i is a variance and σyi is a standard 
deviation, respectively. 

IV. APPLICATION FOR TOLERANCE ANALYSIS 
Recently, the demand for BLDC motors is expanding 

rapidly, and better good quality is required in some of 
applications. So, BLDC motors have to be designed in order to 
design specifications. The torque ripple of BLDC motors 
arises from the interaction between its rotor magnet and 
slotted stator. It exerts a bad influence on the motor 
performance. Therefore, this paper illustrates that the torque 
performances of the BLDC motor is applied to a reduction of 
the torque ripple and tolerance analysis of controller factors, 
which is using deterministic Response Surface Methodology 
and Stochastic Response Surface Methodology, respectively. 

A. Field Computation Framework  

The magnet field within the motor is computed using the 
two-dimensional finite element method (2-D FEM). The 
analysis domain comprises a sixth model of the whole motor 
and periodic conditions are used as boundary conditions of 
analysis model. The Maxwell stress tensor is used for a 
resultant forces and torque calculations. Thus, a torque ripple 
is defined as follows: 

 

Peaktopeak
Ripple

Mean

T
T

2 T
 =  (12) 

 
where, TPeak to peak is difference between the maximum and the 
minimum of the running torque and TMean  is a mean value of a 
running toque. Moreover the rotor rotation is simulated by 

moving-line technique without the regeneration of meshes of 
the analysis model. 

B. Model and Define Design Variables Framework 

The applied machine is a BLDC motor used for an electric 
power steering of a vehicle. The stator has 18 slots and the 
rotor is built of 12 title of radial magnetic, bonded NdFeB 
magnet. The motor applied for an electric power steering is 
requiring a low level of the torque ripple for comfortable 
steering of a vehicle. The motor geometries can be defined by 
9 parameters as shown on Table II and Fig. 2. 

As 9 parameters define the shape of the motor, in this case 
the simulation time is long due to the number of the required 
experiments, although without taking into account the 
interactions of high order between parameters. Therefore, it is 
necessary for an investigation process of the significant 
parameters. Fractional factorial designs are well adapted to 
this problem and furthermore only 12 simulations with using 
taguchi’s orthogonal array L 12 [6]-[8]. Applying the sum of 
squares versus various parameters makes possible to select the 
significant parameters and Fig. 3 shows the importance of 
each parameter and three controller factors are selected as x2, 
x4, x8. 

C.  Optimization Framework 

The general formation of a conventional optimization is 
expressed as following. 

TABLE II. PARAMETER DESCRIPTION 

Parameters DESCRIPTION Initial Value 

x1 Dead zone (edeg.) 18.0

x2 Skew angle (mdeg.) 0 

x3 Stator yoke thickness (mm) 4 

x4 Tooth width (mm) 4 

x5 Tooth shield angle (mdeg.) 98 

x6 Slot open width (mm) 2 

x7 Tooth shield height (mm) 1 

x8 Aiir-gap (mm) 0.8 

x9 Slot fillet radius (mm) 1 
* edeg : electrical degree , mdeg : mechanical degree  
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Fig. 2. Analysis model and design variables  
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Fig. 3. Effects of design variables regarding the torque ripple 

Minimize: 
1 2 kf(x , x , , x )  (13) 

Subject to: 0≤i 1 2 kg (x ,x , , x )   , i = 1, 2, , m  (14) 

≤ ≤iL i iUx  x x i = 1, 2, , k  (15) 
 
where, f(x1,x2, ,xk) is the objective function, gi(x1,x2, ,xk) is 
the constraint functions with the dimension of m, xiL and xiU is 
lower and upper bounds of design variables xi and k is the 
total number of design variables respectively. 

The goal of the optimization is to reduce the torque ripple 
and to satisfy the running torque. An analytical model built 
from the deterministic Response surface Method (RSM) can 
be used as either objective functions or constraint functions in 
an optimization procedure and the sequential quadratic 
programming method [9] has been used to solve this work. 

D. Tolerance Analysis Framework 
In order to consider uncertainty of design variables, the 

mean (µxi) and standard deviation (σxi) of them are obtained 
from (8) and numerical results of the optimization described 
following section. The tolerances of design variables are 
regarded as 3σ and their distribution are assumed as normal 
distributions, and the fundamental moments of design 
variables are calculated with assuming uncertainty, which is 
10(%), 5(%) and 1(%), respectively. Table III presents the 
moments of design variables. 

TABLE III. MOMENTS ACCORDING TO TOLERANCES OF DESIGN 
VARIABLES 

Section µ xi 
σ xi 

at ∆ xxi = 
± 10 % 

σ xi 
at ∆ xxi = 

± 5 % 

σ xi 
at ∆ xxi = 

± 1 % 

Skew angle 
( x2 ) 

10.2 
(deg.) 0.340 0.170 0.034 

Tooth width 
( x4 ) 

4.23 
(mm) 0.141 0.071 0.014 

Air-gap    
( x8 ) 

0.76 
(mm) 0.025 0.013 0.003 

V. NUMERICAL RESULTS AND DISCUSSION 
This paper present the tolerance analysis after the 

optimization design based on the statistical fitting method. 
For applying tolerance analysis on the BLDC motor, firstly, 
taguchi’s orthogonal design is used to select the three main 
factors of the nine design parameters as described above 
section and the optimization design to reduce the torque ripple 
is executed by using the second-degree fitted model of the 
torque performance on the BLDC motor then the tolerance 
analysis is accomplished by SRSM. At this work, the 
optimization results are used as the expectation value of the 
design variables. A schematic depiction Fig. 4 describes the 
tolerance analysis procedure of the applied BLDC motor. 

A. Results for Numerical Optimization 
The second-order fitted model of the torque ripple is used 

as the objection function and that of the running torque is used 
as the constraint function, respectively. For building the 
second-order fitted model, besides, the central composite 
design (CCD) is used in this paper. CCD is frequently used 
for fitting second-order response model and CCD involving 
three factors is required to conduct 15 experiments. Axial 
points on the axis of three design variables at a distance from 
the design center choose 1.682 for a rotatable experiment 
design [10]. The levels of three design variables are shown in 
Table IV and the toque performance is simulated using 2-D 
FEM in each trial. The two regression models are defined as 
objective function and the constraints as follows: 
 

Minimize: 
Torque ripple (%)

+ +

+ + +
+ +

4 8

2 2 2
2 4 8

2 4 2 8 4 8

2

f(x) = u

       = 40.184 10.485x 26.975x 2 . 6 7 6 x

0.482x 0.735x 0.349x

0.255x x 0.099x x 8.599x x

−

−

 (16) 

Subject to:  
Running torque ( )⋅

− + + +

− − − −
− ≥

1

4 8

2 2 2
2 4 8 2 4

4 8

2

g (x) =  u kg f cm

        = 29.462 0.291x 4.109x 33.719x

0.016x 1.425x 3.612x 0.001x x

3.492x x 41

 (17) 

and the design space is chosen as follows: 
, ,≤ ≤ ≤ ≤ ≤ ≤2 4 87.32 x 10.68 3.66 x 4.34 0.53 x 0.87   (18) 

TABLE IV. LABEL OF THE CONTROLLABLE PARAMETERS 

The label of the parameters 
Controllable 
parameters 

-1.682 -1 0 1 1.682 

x2 
Skew angle 

(mdeg.) 7.32 8.0 9 10.0 10.68 

x4 
Tooth width 

 (mm)  3.66 3.8 4.0 4.2 4.34 

x8 
Air-gap    

(mm) 0.53 0.6 0.7 0.8 0.87 
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Fig. 4. Procedure of the tolerance analysis in this work 

The aim of the optimization can be accomplished through 
substituting (16)-(18) in (13)-(15), one by one. The result of 
this optimization design is shown in Table V the predicted 
response surfaces versus design variables are shown in Fig. 5 
and optimum point is illustrated on these response surfaces, 
respectively. 

The polynomial chaos expression of the torque 
characteristic is used to analyze the tolerance and can be 
written as follows; 

 
Polynomial chaos expression of the torque ripple:  

Torque ripple

( ) ( ) ( )

− − +

+ − + − + −
+ + −

2 4 8

2 2 2
2 4 8

2 4 2 8 4 8

 y = 0.579 0.011x 0.144x 0.015x

0.056 x 1 0.001 x 1 0.007 x 1

0.002x x 0.005x x 0.031x x

 (19) 

TABLE V. RESULTS OF THE NUMERICAL OPTIMIZATION 

Initial Model 
Design variables 

Size Running 
torque 

Torque 
ripple 

Skew angle (x2) 0 (deg.) 

Tooth width (x4) 4.0 (mm) 

Air-gap (x8) 0.8 (mm) 

41.3 (kgf•cm) 2.24 (%) 

Optimal Model 
Design variables 

Size Running 
torque 

Torque 
ripple 

Skew angle (x2) 10.2  (deg.) 

Tooth width (x4) 4.23 (mm) 

Air-gap (x8) 0.76 (mm) 

41.4 (kgf•cm) 0.54 (%) 

Polynomial chaos expression of the running torque:  
Running Torque

( ) ( )

( )

− − +

− − − −

− − −

2 4 8

2 2
2 4

2
8 4 8

 y = 40.868 0.011x 0.325x 0.072x

0.002 x 1 0.001 x 1

0.072 x 1 0.013 x x

 (20) 

 

For building the second-order polynomial chaos 
expression, besides, the full factorial design (FFD) is used in 
this paper. FFD with three factors is required to conduct 27 
experiments. The levels of three design variables are shown in 
Table VI. The tolerance analysis can be accomplished through 
substituting (19), (20) in (9)-(11). Also, the distributions of 
design variables are assumed as normal random variable. The 
statistical characteristic of the output is computed by using the 
random numbers generate with standard normal distribution. 

Skew angle : x2(°) = 10.27

Torque ripple (%
)

Optimal Point 

Tooth width  : x4(mm)

Air-gap length : x
8 (mm)

Skew angle : x2(°) = 10.27

Torque ripple (%
)

Optimal Point 

Tooth width  : x4(mm)

Air-gap length : x
8 (mm)

Skew angle : x2(°) = 10.27

Torque ripple (%
)

Optimal Point 

Tooth width  : x4(mm)

Air-gap length : x
8 (mm)

 

(a) The response surface regarding the torque ripple 
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(b) The response surface regarding the running torque 

Fig. 5. The predicted response surface 

In this paragraph, the results of tolerance analysis show the 
practical application of the SRSM using the result from the 
optimization design. The statistic used in tolerance analysis 
will typically be produced from proper sample data. In this 
paper, data from populations of outputs is used as the number 
of 8000 samples in all cases, if the manufacturing process is 
running at the design variable tolerance of 10 (%) based on the 
three-sigma level. The variation of the outputs is distributed as 
shown in Fig. 6.  

TABLE VI. THE LABEL OF THE DESIGN PARAMETER 

The label of the parameters 
Controllable parameters 

-1.74 0 1.74 

x2 Skew angle (mdeg.) 9.6 10.2 10.7 

x4 Tooth width  (mm)  3.99 4.23 4.47 

x8 Air-gap (mm) 0.72 0.76 0.8 
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(a) Distribution concerning the torque ripple 

Pr
ob

ab
ili

ty
 D

en
si

ty
 

Running torque (kgf-cm) 

Pr
ob

ab
ili

ty
 D

en
si

ty
 

Running torque (kgf-cm) 
 

(b) Distribution concerning the running torque 

Fig. 6. Distribution of outputs at the design variable tolerance of 10 (%) 

In order to reduce scatter of the outputs from their population, 
design variables need to run at a tighter tolerance than 10 (%), 
such as 5(%). The scatter of population of outputs at the 
design variable tolerance of 5(%) gravitates toward the means 
of the outputs. However, if all design variables are regulated 
with tight tolerance, the manufacturing cost is increased. The 
sensitivity, which is obtained from variance analysis, of each 
effect for three design variables, is shown in Fig. 7. From the 
results of variance analysis, the air-gap (x8) needs to be 
controlled with a tighter tolerance than the others. The results 
according to running tolerances are compared with each case 
and then they are shown in Fig 8. These results show, when 
the air-gap (x8) is controlled with a proper tight tolerance and 
the tolerance of the others are is regulated with loose tolerance, 
the scatter of population of outputs extremely centralizes in 
the means of the outputs, compared that all design variables 
are regulated with tight tolerance. 
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Fig. 7. Sensitivities of each design variable 
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(a) The predicted distribution concerning the torque ripple 

 

(b) The predicted distribution concerning the running torque 

Fig. 8. Compared with predicted distributions of each cases 

 
 
 
 
 
 
 
 
 
 

 
 

VI. CONCLUSION 
The application considered in this paper is on the tolerance 

analysis of the torque characteristics of the BLDC Motor from 
the electric point of view. The tolerance analysis is 
accomplished by the SRSM, which is used to estimate 
statistically significant results of the torque characteristics of 
the BLDC motor. In most cases of manufacturing electric 
machines, manufacturing tolerance inevitably occur because 
of the necessity for a manufacture process and such tolerances 
certainly have an influence on the machine’s performance. 
Therefore, tolerance analysis is very important in the electric 
machine industry for improving product robustness and 
reducing the cost. If it is possible to allow for reasonable 
tolerance in each design variable in the design stage, this 
approach will provide a great potential for the cost reduction 
without losing performance. 
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