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Abstract-- This paper deals with the natural vibration modes 

and frequencies of the rotor in a 6/4 Switched Reluctance 
Motor (SRM). The effect of the mode shapes of the rotor on the 
vibration characteristics is investigated. Transfer Matrix 
Method (TMM) is used to calculate the 3-dimensional whirling 
modes and the natural frequencies. It is necessary to know the 
resonance speed and the mode shapes to reduce the vibration 
and noise in design stage. TMM is useful to predict the 
vibration behavior of rotor because of a rapid computing time. 
The analysis results based on TMM are validated by the 
comparison with that obtained by structural finite element 
analysis and experimental values.  

 
Index Terms-- Behaviour of rotor, resonance speed, SRM and 

Transfer matrix method.   

I. INTRODUCTION 

RM is a fascinating  machine with all kinds of interesting 
application possibility because it has many advantages 

such as the possibility of high-speed operation and simplicity 
mechanical construction. However, the most striking 
disadvantages of the SRM are high levels of vibration and 
torque ripple. Among many possible sources of vibra tion and 
noise in SRM, the relationship between magnetic and 
mechanical origins is to be focused. The dominant sources are 
deformation of stator and eccentricity caused by rotor 
dynamics when the natural frequencies of the stator or rotor 
are close to the frequency of the electromagnetic force [1]. 
The mechanical origin for the magnetic force is classified into 
two parts, which are the stator and the rotor. 

The commutation of the tangential forces, which are exerted 
on the poles of the stator and the rotor and produce torque, 
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can excite vibration of the stator and rotor. In the aspects of 
the stator, normal SRM operation is characterized by radial 
forces on opposite poles, which tend to deform the stator into 
oval. The stator vibration mode will be excited when the radial 
forces on the stator poles coincide with the natural vibration 
[1], [2]. The modal deflection of the stator back iron as a ring 
can be predicted from calculating the modal analysis, free 
vibration.  

Especially, the rotor will get into resonance when it rotates 
at speeds equal to the bending natural frequency and these 
speeds are called as critical speeds or resonance speeds [3]. 
Moreover, the determination of the position of bearing on the 
shaft, bearing stiffness and balancing technology is 
principally associated with rotor vibration mode. It is therefore 
is necessary to know the natural frequencies and vibration 
modes of the rotor as well. These should be investigated in 
the design stage. The existing research on vibration mode and 
acoustic noise of the SRM mostly deals  with the stator part of 
motor [1]-[6]. This paper deals with the rotor behavior to 
avoid resonance speed in high-speed operation. 

As a general practice in the design of rotor is to determine 
the critical speeds and modes, a suitable analysis method is 
required to reduce calculation time. The Finite Element 
Method (FEM) is well established for structural analysis of 
the motor. Its inherent drawbacks, however, are its complexity 
and the length of time. It takes a lot of time to obtain a 
solution because the matrix size depends on the number of 
elements and the Degree of Freedom (DOF) at each node. On 
the other side, the method of TMM is independent to the 
number of element, so it can have the fixed matrix size 
regardless of the number of element and reduce the 
computing time. In order to apply TMM to this study, the 
rotor is modeled as several lumped masses connected by 
massless elastic shaft.  

Based on the structural TMM and elasticity theory, 
3-dimensional vibration modes and res onant frequencies of 
rotor-bearing system for SRM are analyzed and demonstrated 
in this paper. The analysis results are validated by  
measurements and then the computational gain of the 
proposed method is compared with that of 3-D FEM.  

II. ANALYSIS MODEL  

The analysis model SRM has 4 rotor poles and 6 stator 
poles with three phases winding in the stator. Table 1 
presents the main specifications and the measured mechanical 
properties needed for analysis of mechanical structure. Fig.1 
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shows the configuration of t he rotor and the analysis model. 
The analysis model of the rotor supported on bearings is 
divided into several lumped masses and then they are 
constructed by connecting the n lumped mass as massless 
elastic shaft.  

T ABLE I 
SPECIFICATION OF ANALYSIS MODEL AND MATERIAL PROPERTY  

Item Value Item Value 
Rotor core mass 
density 

7850 
(kg/m 3) Shaft mass density 

7900 
(kg/m 3) 

Bearing stiffness 5.36×10
5(N/m) 

Young’s Modulus 205(Gpa) 

 

 
Fig. 1.  Configuration and analysis model of lumped mass  

III. ANALYSIS METHOD 

A. Transfer matrix method 

The form of the point matrix [P]i, presenting the 
mathematical expression of the lumped masses, is derived 
from equilibrium relation for the mass at the ith point. The 
field matrix [F]i, representing the massless elastic shaft, is 
derived from the solution of the governing differential 
equation of a uniform beam. The point and field matrixes for 
the 3-D analysis model each have eight DOF. The 8 by 8 
overall transfer matrix from 1 to nth station in the over all 
system is developed from the product of all field and point 
matrix in series. The modal analysis is obtained by solving the 
overall transfer matrix.  

The state vector that presents DOF in each element is 
composed of deflection ωy and ωz, angle deflection θy and θz, 
bending moment Mz and My, shear forces Vy and Vz in the x-y 
and x-z planes. 

- Point matrix: From the equilibrium relation for the mass at 
point i, we can directly write the following point transfer 
matrix [3]. 
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where {S}i is state vector, [P] i is the point matrix for ith mass 
vibrating in a normal mode with frequency λ, m is mass and K 
is stiffness of bearing. Ip and It is pole inertia moment and 
transverse moment, respectively. 

- Field matrix: The solution of the governing differential 
equations of an uniform beam segment connecting ith mass 
from differential equation of elastic curve and area moment 
method are written in a transfer matrix as equation (2) [3]. 
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where [Fi] is the field matrix for the ith massless elastic shaft 
and E is the Young’s modulus. I is inertia of moment and L is 
the length between the lumped mass.  

- Overall transfer matrix: The 4 by 4 overall transfer matrix 
from station 1 to nth station in the over all system is 
constructed by the product of all field and point matrices in 
series. It can be written as equation (3). 
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An algebraic equation is obtained by imposing the free 
boundary condition in equation (3); V=0, M=0 at both lumped 
mass 1 and nth. The solution of the eigenvalue equation can 
be obtained by a root-finding technique for the value of λ. 
Once the natural frequency is founded, the corresponding 
mode shape can be determined by unit slope ω0 =1at the first 
mass. 

B. Structural finite element analysis 

The vibration equation for a mechanical undamped system 
based on the principle of Hamilton can be expressed in matrix 
notation when the free vibration is periodic [5]: 

2([ ] [ ]){ } {0}K M− λ φ =                          (4) 

where eigenvector {φ} presents the mode shape at the natural 
angular velocity, [M] and [K] are the global mass matrix and 
stiffness matrix, respectively. The above equation has a 
no-zero solution. From the roots of the determinant in the 
parenthesis of equation (4), the natural frequenc ies and 
modes of rotor can be determined.  

IV. COMPUTATION AND MEASUREMENT RESULTS 

In TMM, the model is divided into 28 lumped masses and 
then they are constructed by connecting the each mass as an 
uniform beam segment. For FEM using ANSYS, about 1992 
hexahedron-shaped elements are used for 3-D modeling of 
solid structure that is defined by eight nodes having three 
DOF at each node. The computation for solving the natural 
frequencies is implemented with the aid of a Pentium 
Celeron433 computer.  

Fig. 2 shows the measured frequency response functions 
sum obtained from the experimental modal analysis. The 
inertance in the y-axis is the transfer function resulting from 
the relationship between impulsive excitation and acceleration 
signal. The natural frequencies exist within the audible sound 
range.  

Table II shows the comparison of calculation and 
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measurement for the natural frequencies of the rotor. The 
analysis results obtained by FEM and TMM are in good 
agreement with the experimental values. The computational 
error is mainly attributed to the simplicity of the computing 
model. The 4th natural frequency is greater than the other 
mode and it is due to the lamination along the stack length. 
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Fig. 2.  Measured frequency response functions 

 
T ABLE II 

NATURAL FREQUENCY COMPARISON  
TMM(Hz) FEM(Hz) 

Mode  
Frequency Error Frequency Error  

Measured 
frequency 

1st  1588 1.28 1578 0.64 1568 
2nd 2812 6.52 2535 3.98 2640 
3rd 3501 3.70 3327 1.45 3376 
4th 4532 9.57 4686 13.30  4136 

 
T ABLE III 

COMPUTATION GAIN AND NODE NUMBER COMPARISON  
Item Numbe

r of 
node  

Computing 
time (sec) 

Computation 
gain(FEM/TMM

) 

Average Error 
for 

experiment  
TM
M 

28 40 1 5.02 

FEM 2606 263 6.6 4.84 

 
Table III shows the computation gain and the computing 

time in each analysis method. The computation gain is defined 
as the proportion of computing time using FEM to using 
TMM. The method of TMM can reduce the computing time 
about six times over FEM.  

Fig. 3 shows the mode shapes for the rotor with 
corresponding to the natural frequencies in 2-D plane. The 
displacement value of mode shape displayed in Fig. 3 is 
normalized. The calculations are based on a 3-D TMM 
structural analysis considering the bearing of rotor. The 2nd 
and 3rd modes have one and two nodal points, respectively. If 
rotor bearings are placed in these nodal points, the vibration 
tends to be increased. Therefore, the bearing position should 
avoid these nodal points.  

Each rotor behavior that corresponds to a resonant 
frequency is displayed on 3D spatial plane is shown in Fig. 4. 
These mode shapes present the locus of rotor center along 
stack length when the rotor is rotating. There are two whirling 
modes of a rigid rotor in flexible end bearings. Fig. 4(a) is the 
translatory whirling motion and Fig. 4(b) is the conical 
whirling motion of rotor. The first and second modes do not 
produce deformation of rotor along the shaft elastic axis, 

because the behavior of rigid body rotor is caused by the 
stiffness of the rotor bearing supporting both end of rotor. 
These two modes become the origin that produces the 
eccentricity of rotor in an electric machine. In order to reduce 
vibration in these modes, it is important to select the bearing 
with appropriate stiffness based on the modal analysis. 

An accurate analysis of resonant frequencies and the rotor 
design can be achieved from proposed analysis method. In 
addition, the analysis about modal analysis will allow us to 
propose a less noisy structure and resonant speed.  

 
Fig. 3. Mode shapes of the SRM rotor in 2-D 

 
 
 
 
 
 
 
 
 
  (a) Mode at 1588 Hz    (a) Mode at 2811 Hz   (a) Mode at 3501 
Hz 
Fig. 4. 3-D whirling mode with corresponding to natural frequency of 
rotor  

V. CONCLUSION 

This work presents the natural frequencies and their mode 
shapes of the rotor in SRM. Transfer matrix method is used to 
reduce the calculation time. For the calculation time and 
accurate analysis, the validation of the proposed method is 
verified by the comparison of the experiment  and FEM. In 
addition, the effect of the three dimensional mode shapes of 
rotor on the vibration characteristic is investigated and 
described. Due to the speed of the computation, the method 
proposed in this paper is more practical for estimation of the 
natural frequencies of the rotor and regulating the designing 
scheme when designing the rotor in SRM.  
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